基于机器学习算法的功率限制应用性能预测

Bo Wang, Jannis Klinkenberg, D. Ellsworth, C. Terboven, Matthias S. Müller
{"title":"基于机器学习算法的功率限制应用性能预测","authors":"Bo Wang, Jannis Klinkenberg, D. Ellsworth, C. Terboven, Matthias S. Müller","doi":"10.1109/HPCS48598.2019.9188144","DOIUrl":null,"url":null,"abstract":"Growing high performance computing (HPC) clusters are encountering a power wall due to limitations in the surrounding infrastructure. Maximizing a cluster’s performance in the presence of a limited power budget is an open problem with high relevance and requires a deep understanding of application performance and power draw.Hardware components with the same technical specification have distinct power efficiencies and applications running on those components have diverse power profiles. Enforcing a power limit on individual components changes the performance characteristics. In this work, we investigate and quantity power- and performance-characteristics of various applications. Further, we present a systematic methodology to collect corresponding monitoring data and apply machine learning (ML) techniques to predict the performance under particular power caps. The observed prediction error is under 3% in most cases, which is in the same range of performance variation as application runs without a power cap.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Prediction for Power-Capped Applications based on Machine Learning Algorithms\",\"authors\":\"Bo Wang, Jannis Klinkenberg, D. Ellsworth, C. Terboven, Matthias S. Müller\",\"doi\":\"10.1109/HPCS48598.2019.9188144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing high performance computing (HPC) clusters are encountering a power wall due to limitations in the surrounding infrastructure. Maximizing a cluster’s performance in the presence of a limited power budget is an open problem with high relevance and requires a deep understanding of application performance and power draw.Hardware components with the same technical specification have distinct power efficiencies and applications running on those components have diverse power profiles. Enforcing a power limit on individual components changes the performance characteristics. In this work, we investigate and quantity power- and performance-characteristics of various applications. Further, we present a systematic methodology to collect corresponding monitoring data and apply machine learning (ML) techniques to predict the performance under particular power caps. The observed prediction error is under 3% in most cases, which is in the same range of performance variation as application runs without a power cap.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于周围基础设施的限制,不断增长的高性能计算(HPC)集群正在遇到功率墙。在有限的功率预算下最大化集群的性能是一个具有高度相关性的开放性问题,需要对应用程序性能和功耗有深入的了解。具有相同技术规范的硬件组件具有不同的功率效率,并且在这些组件上运行的应用程序具有不同的功率配置文件。对单个组件实施功率限制会改变性能特征。在这项工作中,我们研究和量化了各种应用的功率和性能特征。此外,我们提出了一种系统的方法来收集相应的监测数据,并应用机器学习(ML)技术来预测特定功率上限下的性能。在大多数情况下,观察到的预测误差在3%以下,这与应用程序在没有功率上限的情况下运行的性能变化范围相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Prediction for Power-Capped Applications based on Machine Learning Algorithms
Growing high performance computing (HPC) clusters are encountering a power wall due to limitations in the surrounding infrastructure. Maximizing a cluster’s performance in the presence of a limited power budget is an open problem with high relevance and requires a deep understanding of application performance and power draw.Hardware components with the same technical specification have distinct power efficiencies and applications running on those components have diverse power profiles. Enforcing a power limit on individual components changes the performance characteristics. In this work, we investigate and quantity power- and performance-characteristics of various applications. Further, we present a systematic methodology to collect corresponding monitoring data and apply machine learning (ML) techniques to predict the performance under particular power caps. The observed prediction error is under 3% in most cases, which is in the same range of performance variation as application runs without a power cap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信