COMSOL解决方案,以加强无人机的电磁干扰,防止雷击

M. Al Salameh, B. Musa
{"title":"COMSOL解决方案,以加强无人机的电磁干扰,防止雷击","authors":"M. Al Salameh, B. Musa","doi":"10.1109/IMAS55807.2023.10066923","DOIUrl":null,"url":null,"abstract":"In this paper, COMSOL Multiphysics software is used to simulate lightning impulse applied to nose, wings, and fuselage of unmanned aerial vehicles (UAVs). Based on that, the electric field levels at different points inside the UAV are computed. Real-world 3D model of UAV is created using SOLIDWORKS software. Since the impulse has no single frequency, the model is used in the time domain to simulate the lightning strike. Furthermore, hardening the UAV to reduce electromagnetic interference (EMI) by shielding against lightning strikes is examined. The results confirm that an overlay of good electric conductor can essentially prevent lightning strikes from entering the UAV, even when necessary narrow seams and holes are not shielded. To show the validity and usefulness of the model, the computed results are compared with measured data where acceptable agreement is observed.","PeriodicalId":246624,"journal":{"name":"2023 International Microwave and Antenna Symposium (IMAS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMSOL solutions to EMI hardening of UAVs against lightning strikes\",\"authors\":\"M. Al Salameh, B. Musa\",\"doi\":\"10.1109/IMAS55807.2023.10066923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, COMSOL Multiphysics software is used to simulate lightning impulse applied to nose, wings, and fuselage of unmanned aerial vehicles (UAVs). Based on that, the electric field levels at different points inside the UAV are computed. Real-world 3D model of UAV is created using SOLIDWORKS software. Since the impulse has no single frequency, the model is used in the time domain to simulate the lightning strike. Furthermore, hardening the UAV to reduce electromagnetic interference (EMI) by shielding against lightning strikes is examined. The results confirm that an overlay of good electric conductor can essentially prevent lightning strikes from entering the UAV, even when necessary narrow seams and holes are not shielded. To show the validity and usefulness of the model, the computed results are compared with measured data where acceptable agreement is observed.\",\"PeriodicalId\":246624,\"journal\":{\"name\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAS55807.2023.10066923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Microwave and Antenna Symposium (IMAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAS55807.2023.10066923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用COMSOL Multiphysics软件对无人机机头、机翼和机身的雷击脉冲进行仿真。在此基础上,计算了无人机内部不同位置的电场水平。利用SOLIDWORKS软件建立了无人机的真实三维模型。由于脉冲没有单一频率,因此在时域内采用该模型对雷击进行模拟。此外,还研究了通过屏蔽雷击来增强无人机以减少电磁干扰(EMI)。结果证实,即使在必要的窄缝和孔没有屏蔽的情况下,良好的电导体覆盖层也可以从根本上防止雷击进入无人机。为了证明模型的有效性和实用性,将计算结果与观测数据进行了比较,其中观察到可接受的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMSOL solutions to EMI hardening of UAVs against lightning strikes
In this paper, COMSOL Multiphysics software is used to simulate lightning impulse applied to nose, wings, and fuselage of unmanned aerial vehicles (UAVs). Based on that, the electric field levels at different points inside the UAV are computed. Real-world 3D model of UAV is created using SOLIDWORKS software. Since the impulse has no single frequency, the model is used in the time domain to simulate the lightning strike. Furthermore, hardening the UAV to reduce electromagnetic interference (EMI) by shielding against lightning strikes is examined. The results confirm that an overlay of good electric conductor can essentially prevent lightning strikes from entering the UAV, even when necessary narrow seams and holes are not shielded. To show the validity and usefulness of the model, the computed results are compared with measured data where acceptable agreement is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信