隐式结构化Web内容的问答

Eugene Agichtein, C. Burges, Eric Brill
{"title":"隐式结构化Web内容的问答","authors":"Eugene Agichtein, C. Burges, Eric Brill","doi":"10.1109/WI.2007.88","DOIUrl":null,"url":null,"abstract":"Implicitly structured content on the Web such as HTML tables and lists can be extremely valuable for web search, question answering, and information retrieval, as the implicit structure in a page often reflects the underlying semantics of the data. Unfortunately, exploiting this information presents significant challenges due to the immense amount of implicitly structured content on the web, lack of schema information, and unknown source quality. We present TQA, a web-scale system for automatic question answering that is often able to find answers to real natural language questions from the implicitly structured content on the web. Our experiments over more than 200 million structures extracted from a partial web crawl demonstrate the promise of our approach.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Question Answering over Implicitly Structured Web Content\",\"authors\":\"Eugene Agichtein, C. Burges, Eric Brill\",\"doi\":\"10.1109/WI.2007.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implicitly structured content on the Web such as HTML tables and lists can be extremely valuable for web search, question answering, and information retrieval, as the implicit structure in a page often reflects the underlying semantics of the data. Unfortunately, exploiting this information presents significant challenges due to the immense amount of implicitly structured content on the web, lack of schema information, and unknown source quality. We present TQA, a web-scale system for automatic question answering that is often able to find answers to real natural language questions from the implicitly structured content on the web. Our experiments over more than 200 million structures extracted from a partial web crawl demonstrate the promise of our approach.\",\"PeriodicalId\":192501,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2007.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Web上的隐式结构化内容(如HTML表和列表)对于Web搜索、问题回答和信息检索非常有价值,因为页面中的隐式结构通常反映数据的底层语义。不幸的是,由于web上大量的隐式结构化内容、缺乏模式信息和未知的源质量,利用这些信息面临着巨大的挑战。我们提出了一个网络规模的自动问答系统TQA,它通常能够从网络上隐式结构化的内容中找到真实自然语言问题的答案。我们对从部分网络抓取中提取的超过2亿个结构进行了实验,证明了我们方法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Question Answering over Implicitly Structured Web Content
Implicitly structured content on the Web such as HTML tables and lists can be extremely valuable for web search, question answering, and information retrieval, as the implicit structure in a page often reflects the underlying semantics of the data. Unfortunately, exploiting this information presents significant challenges due to the immense amount of implicitly structured content on the web, lack of schema information, and unknown source quality. We present TQA, a web-scale system for automatic question answering that is often able to find answers to real natural language questions from the implicitly structured content on the web. Our experiments over more than 200 million structures extracted from a partial web crawl demonstrate the promise of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信