基于约束的曲线b样条曲面设计

P. Michalik, B. Brüderlin
{"title":"基于约束的曲线b样条曲面设计","authors":"P. Michalik, B. Brüderlin","doi":"10.2312/SM.20041392","DOIUrl":null,"url":null,"abstract":"In this paper we describe the design of B-spline surface models by means of curves and tangency conditions. The intended application is the conceptual constraint-driven design of surfaces from hand-sketched curves. The solving of generalized curve surface constraints means to find the control points of the surface from one or several curves, incident on the surface, and possibly additional tangency and smoothness conditions. This is accomplished by solving large, and generally under-constrained, and badly conditioned linear systems of equations. For this class of linear systems, no unique solution exists and straight forward methods such as Gaussian elimination, QR-decomposition, or even blindly applied Singular Value Decomposition (SVD) will fail. We propose to use regularization approaches, based on the so-called L-curve. The L-curve, which can be seen as a numerical high frequency filter, helps to determine the regularization parameter such that a numerically stable solution is obtained. Additional smoothness conditions are defined for the surface to filter out aliasing artifacts, which are due to the discrete structure of the piece-wise polynomial structure of the B-spline surface. This leads to a constrained optimization problem, which is solved by Modified Truncated SVD: a L-curve based regularization algorithm which takes into account a user defined smoothing constraint.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Constraint-based design of B-spline surfaces from curves\",\"authors\":\"P. Michalik, B. Brüderlin\",\"doi\":\"10.2312/SM.20041392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe the design of B-spline surface models by means of curves and tangency conditions. The intended application is the conceptual constraint-driven design of surfaces from hand-sketched curves. The solving of generalized curve surface constraints means to find the control points of the surface from one or several curves, incident on the surface, and possibly additional tangency and smoothness conditions. This is accomplished by solving large, and generally under-constrained, and badly conditioned linear systems of equations. For this class of linear systems, no unique solution exists and straight forward methods such as Gaussian elimination, QR-decomposition, or even blindly applied Singular Value Decomposition (SVD) will fail. We propose to use regularization approaches, based on the so-called L-curve. The L-curve, which can be seen as a numerical high frequency filter, helps to determine the regularization parameter such that a numerically stable solution is obtained. Additional smoothness conditions are defined for the surface to filter out aliasing artifacts, which are due to the discrete structure of the piece-wise polynomial structure of the B-spline surface. This leads to a constrained optimization problem, which is solved by Modified Truncated SVD: a L-curve based regularization algorithm which takes into account a user defined smoothing constraint.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/SM.20041392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SM.20041392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文用曲线和切线条件描述了b样条曲面模型的设计。预期的应用是从手绘曲线的曲面的概念约束驱动设计。广义曲面约束的求解意味着从一条或几条曲线、入射到曲面上的曲线以及可能附加的切线和光滑条件中找到曲面的控制点。这是通过求解大型的、通常缺乏约束的、条件恶劣的线性方程组来完成的。对于这类线性系统,不存在唯一解,直接的方法,如高斯消去,qr分解,甚至盲目应用奇异值分解(SVD)都将失败。我们建议使用正则化方法,基于所谓的l曲线。l曲线可以看作是一个数值高频滤波器,它可以帮助确定正则化参数,从而得到数值稳定的解。为表面定义了额外的平滑条件以过滤掉混叠伪像,这是由于b样条表面的分段多项式结构的离散结构造成的。这导致了一个约束优化问题,该问题由修正截断SVD解决:一种基于l曲线的正则化算法,该算法考虑了用户定义的平滑约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraint-based design of B-spline surfaces from curves
In this paper we describe the design of B-spline surface models by means of curves and tangency conditions. The intended application is the conceptual constraint-driven design of surfaces from hand-sketched curves. The solving of generalized curve surface constraints means to find the control points of the surface from one or several curves, incident on the surface, and possibly additional tangency and smoothness conditions. This is accomplished by solving large, and generally under-constrained, and badly conditioned linear systems of equations. For this class of linear systems, no unique solution exists and straight forward methods such as Gaussian elimination, QR-decomposition, or even blindly applied Singular Value Decomposition (SVD) will fail. We propose to use regularization approaches, based on the so-called L-curve. The L-curve, which can be seen as a numerical high frequency filter, helps to determine the regularization parameter such that a numerically stable solution is obtained. Additional smoothness conditions are defined for the surface to filter out aliasing artifacts, which are due to the discrete structure of the piece-wise polynomial structure of the B-spline surface. This leads to a constrained optimization problem, which is solved by Modified Truncated SVD: a L-curve based regularization algorithm which takes into account a user defined smoothing constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信