基于元学习的个性化热舒适模型特征重要性分析

Maxime Beaulieu, Adrian Candocia, Henry Taboh, Liangliang Chen, Ying Zhang
{"title":"基于元学习的个性化热舒适模型特征重要性分析","authors":"Maxime Beaulieu, Adrian Candocia, Henry Taboh, Liangliang Chen, Ying Zhang","doi":"10.1109/ORSS58323.2023.10161792","DOIUrl":null,"url":null,"abstract":"The continual demand for energy-efficient devices has a far-reaching impact, and the HVAC system is no exception. To account for this energy demand, the HVAC system could potentially focus exclusively on energy efficiency while sacrificing user satisfaction. However, the thermal comfort of occupants is also a vital factor when designing HVAC control systems. In this paper, we present a personalized thermal preference model using meta-learning and feature importance analysis (FIA) in order to predict the thermal sensation of an individual with a minimum number of individual surveys and sensor measurements. The use of meta-learning reduces the number of required personalized thermal sensation votes. The FIA algorithm attempts to identify the most important features of the thermal preference model under the framework of meta-learning. With the ASHRAE database II, we find that the use of the FIA algorithm with meta-learning provides a clear distinction between the most important features in the model as compared to when only supervised learning is used.","PeriodicalId":263086,"journal":{"name":"2023 IEEE International Opportunity Research Scholars Symposium (ORSS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Importance Analysis For A Personalized Thermal Comfort Model Using Meta-learning\",\"authors\":\"Maxime Beaulieu, Adrian Candocia, Henry Taboh, Liangliang Chen, Ying Zhang\",\"doi\":\"10.1109/ORSS58323.2023.10161792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continual demand for energy-efficient devices has a far-reaching impact, and the HVAC system is no exception. To account for this energy demand, the HVAC system could potentially focus exclusively on energy efficiency while sacrificing user satisfaction. However, the thermal comfort of occupants is also a vital factor when designing HVAC control systems. In this paper, we present a personalized thermal preference model using meta-learning and feature importance analysis (FIA) in order to predict the thermal sensation of an individual with a minimum number of individual surveys and sensor measurements. The use of meta-learning reduces the number of required personalized thermal sensation votes. The FIA algorithm attempts to identify the most important features of the thermal preference model under the framework of meta-learning. With the ASHRAE database II, we find that the use of the FIA algorithm with meta-learning provides a clear distinction between the most important features in the model as compared to when only supervised learning is used.\",\"PeriodicalId\":263086,\"journal\":{\"name\":\"2023 IEEE International Opportunity Research Scholars Symposium (ORSS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Opportunity Research Scholars Symposium (ORSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ORSS58323.2023.10161792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Opportunity Research Scholars Symposium (ORSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ORSS58323.2023.10161792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对节能设备的持续需求有着深远的影响,暖通空调系统也不例外。为了满足这种能源需求,暖通空调系统可能只关注能源效率,而牺牲用户满意度。然而,在设计暖通空调控制系统时,居住者的热舒适性也是一个至关重要的因素。在本文中,我们提出了一个使用元学习和特征重要性分析(FIA)的个性化热偏好模型,以便通过最少数量的个人调查和传感器测量来预测个体的热感觉。元学习的使用减少了所需的个性化热感觉投票的数量。FIA算法试图在元学习框架下识别热偏好模型的最重要特征。在ASHRAE数据库II中,我们发现,与只使用监督学习相比,FIA算法与元学习的使用在模型中最重要的特征之间提供了明确的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Importance Analysis For A Personalized Thermal Comfort Model Using Meta-learning
The continual demand for energy-efficient devices has a far-reaching impact, and the HVAC system is no exception. To account for this energy demand, the HVAC system could potentially focus exclusively on energy efficiency while sacrificing user satisfaction. However, the thermal comfort of occupants is also a vital factor when designing HVAC control systems. In this paper, we present a personalized thermal preference model using meta-learning and feature importance analysis (FIA) in order to predict the thermal sensation of an individual with a minimum number of individual surveys and sensor measurements. The use of meta-learning reduces the number of required personalized thermal sensation votes. The FIA algorithm attempts to identify the most important features of the thermal preference model under the framework of meta-learning. With the ASHRAE database II, we find that the use of the FIA algorithm with meta-learning provides a clear distinction between the most important features in the model as compared to when only supervised learning is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信