基于树的正则化正交匹配追踪算法

Zhilin Li, Wenbo Xu, Yue Wang, Jiaru Lin
{"title":"基于树的正则化正交匹配追踪算法","authors":"Zhilin Li, Wenbo Xu, Yue Wang, Jiaru Lin","doi":"10.1109/ICT.2015.7124708","DOIUrl":null,"url":null,"abstract":"Reconstruction algorithm is a significant research field of compressed sensing (CS). Among existing algorithms, regularized orthogonal matching pursuit (ROMP) enjoys the merit of implementing fast recovery procedures. Recent studies have recognized that sparse signals have special sparse structure, which is useful for reconstruction as prior information. In this paper, by utilizing the sparse tree structure as prior information, we propose a tree-based regularized orthogonal matching pursuit (T-ROMP) reconstruction algorithm. Furthermore, we set a ratio factor to reduce the error probability of the support set. Compared to ROMP, simulation results indicate that the proposed algorithm achieve better reconstruction performance for different conditions.","PeriodicalId":375669,"journal":{"name":"2015 22nd International Conference on Telecommunications (ICT)","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A tree-based regularized orthogonal matching pursuit algorithm\",\"authors\":\"Zhilin Li, Wenbo Xu, Yue Wang, Jiaru Lin\",\"doi\":\"10.1109/ICT.2015.7124708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstruction algorithm is a significant research field of compressed sensing (CS). Among existing algorithms, regularized orthogonal matching pursuit (ROMP) enjoys the merit of implementing fast recovery procedures. Recent studies have recognized that sparse signals have special sparse structure, which is useful for reconstruction as prior information. In this paper, by utilizing the sparse tree structure as prior information, we propose a tree-based regularized orthogonal matching pursuit (T-ROMP) reconstruction algorithm. Furthermore, we set a ratio factor to reduce the error probability of the support set. Compared to ROMP, simulation results indicate that the proposed algorithm achieve better reconstruction performance for different conditions.\",\"PeriodicalId\":375669,\"journal\":{\"name\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2015.7124708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2015.7124708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

重构算法是压缩感知(CS)的一个重要研究领域。在现有算法中,正则化正交匹配追踪算法(ROMP)具有实现快速恢复的优点。近年来的研究已经认识到,稀疏信号具有特殊的稀疏结构,可以作为先验信息进行重构。本文利用稀疏树结构作为先验信息,提出了一种基于树的正则化正交匹配追踪(T-ROMP)重建算法。此外,我们还设置了一个比值因子来降低支持集的错误概率。仿真结果表明,与ROMP算法相比,该算法在不同条件下具有更好的重构性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tree-based regularized orthogonal matching pursuit algorithm
Reconstruction algorithm is a significant research field of compressed sensing (CS). Among existing algorithms, regularized orthogonal matching pursuit (ROMP) enjoys the merit of implementing fast recovery procedures. Recent studies have recognized that sparse signals have special sparse structure, which is useful for reconstruction as prior information. In this paper, by utilizing the sparse tree structure as prior information, we propose a tree-based regularized orthogonal matching pursuit (T-ROMP) reconstruction algorithm. Furthermore, we set a ratio factor to reduce the error probability of the support set. Compared to ROMP, simulation results indicate that the proposed algorithm achieve better reconstruction performance for different conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信