考虑用户背景信息的图模型推荐算法

Ziqi Wang, Ming Zhang, Yuwei Tan, Wenqing Wang, Yuexiang Zhang, Ling Chen
{"title":"考虑用户背景信息的图模型推荐算法","authors":"Ziqi Wang, Ming Zhang, Yuwei Tan, Wenqing Wang, Yuexiang Zhang, Ling Chen","doi":"10.1109/C5.2011.11","DOIUrl":null,"url":null,"abstract":"With the development of information technologies and increase scale of digital resources, personalized recommendation systems have come into the big picture of web2.0 technology. This paper proposed a graph-based recommendation algorithm using the user-resource rating data to construct a graph model and improves the model by adding user background information. The Random Walk with Restarts algorithm is applied to generate the final recommendation set. The improvement in accuracy on sparse data is illustrated by the experiments on the Movie Lens data set, comparing with the collaborative filtering algorithm.","PeriodicalId":386991,"journal":{"name":"2011 Ninth International Conference on Creating, Connecting and Collaborating through Computing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Recommendation Algorithm Based on Graph-Model Considering User Background Information\",\"authors\":\"Ziqi Wang, Ming Zhang, Yuwei Tan, Wenqing Wang, Yuexiang Zhang, Ling Chen\",\"doi\":\"10.1109/C5.2011.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of information technologies and increase scale of digital resources, personalized recommendation systems have come into the big picture of web2.0 technology. This paper proposed a graph-based recommendation algorithm using the user-resource rating data to construct a graph model and improves the model by adding user background information. The Random Walk with Restarts algorithm is applied to generate the final recommendation set. The improvement in accuracy on sparse data is illustrated by the experiments on the Movie Lens data set, comparing with the collaborative filtering algorithm.\",\"PeriodicalId\":386991,\"journal\":{\"name\":\"2011 Ninth International Conference on Creating, Connecting and Collaborating through Computing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Ninth International Conference on Creating, Connecting and Collaborating through Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C5.2011.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Ninth International Conference on Creating, Connecting and Collaborating through Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C5.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

随着信息技术的发展和数字资源规模的扩大,个性化推荐系统进入了web2.0技术的大背景。本文提出了一种基于图的推荐算法,利用用户资源评价数据构建图模型,并通过添加用户背景信息对模型进行改进。采用随机行走重新启动算法生成最终推荐集。通过对Movie Lens数据集的实验,对比了协同滤波算法在稀疏数据上的精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendation Algorithm Based on Graph-Model Considering User Background Information
With the development of information technologies and increase scale of digital resources, personalized recommendation systems have come into the big picture of web2.0 technology. This paper proposed a graph-based recommendation algorithm using the user-resource rating data to construct a graph model and improves the model by adding user background information. The Random Walk with Restarts algorithm is applied to generate the final recommendation set. The improvement in accuracy on sparse data is illustrated by the experiments on the Movie Lens data set, comparing with the collaborative filtering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信