基于机器学习算法的维多利亚湖地表水制图和体积估算

R. Nagaraj, V. Arulvadivelan, K. Gouthamkumar, K. Dharshen, L. S. Kumar
{"title":"基于机器学习算法的维多利亚湖地表水制图和体积估算","authors":"R. Nagaraj, V. Arulvadivelan, K. Gouthamkumar, K. Dharshen, L. S. Kumar","doi":"10.1109/IConSCEPT57958.2023.10170600","DOIUrl":null,"url":null,"abstract":"Freshwater mapping is a crucial element for water resource planning and conservation. Recently, the estimation of surface area and its temporal changes have been made easier due to the availability of remote sensing data. However, the quantification of water body volume is limited because the existing remote sensing technologies cannot estimate bathymetry data. In this study, Lake Victoria’s surface water extent and volume are estimated by combining the remote sensing and bathymetry data. The surface water extent is determined by feature extraction and classification using Machine Learning (ML). Gaussian Naïve Bayes (GNB), Decision Tree (DT), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost) are the ML algorithms considered. Landsat ETM+images have been used for experimentation. Experimental results concluded that LightGBM and DT are the best and least performing ML algorithms for determining surface extent and volume.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface water mapping and volume estimation of Lake Victoria using Machine Learning Algorithms\",\"authors\":\"R. Nagaraj, V. Arulvadivelan, K. Gouthamkumar, K. Dharshen, L. S. Kumar\",\"doi\":\"10.1109/IConSCEPT57958.2023.10170600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freshwater mapping is a crucial element for water resource planning and conservation. Recently, the estimation of surface area and its temporal changes have been made easier due to the availability of remote sensing data. However, the quantification of water body volume is limited because the existing remote sensing technologies cannot estimate bathymetry data. In this study, Lake Victoria’s surface water extent and volume are estimated by combining the remote sensing and bathymetry data. The surface water extent is determined by feature extraction and classification using Machine Learning (ML). Gaussian Naïve Bayes (GNB), Decision Tree (DT), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost) are the ML algorithms considered. Landsat ETM+images have been used for experimentation. Experimental results concluded that LightGBM and DT are the best and least performing ML algorithms for determining surface extent and volume.\",\"PeriodicalId\":240167,\"journal\":{\"name\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConSCEPT57958.2023.10170600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

淡水制图是水资源规划和保护的关键要素。近年来,由于遥感数据的可用性,对地表面积及其时间变化的估计变得更加容易。然而,由于现有的遥感技术无法估计水深数据,水体体积的量化受到限制。本研究结合遥感和测深资料估算了维多利亚湖的地表水范围和体积。地表水的范围是通过特征提取和机器学习(ML)分类来确定的。高斯Naïve贝叶斯(GNB),决策树(DT),随机森林(RF),极端梯度增强(XGBoost),光梯度增强机(LightGBM)和分类增强(CatBoost)是考虑的ML算法。Landsat ETM+图像已用于实验。实验结果表明,LightGBM和DT是确定表面范围和体积的最佳和最差的ML算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface water mapping and volume estimation of Lake Victoria using Machine Learning Algorithms
Freshwater mapping is a crucial element for water resource planning and conservation. Recently, the estimation of surface area and its temporal changes have been made easier due to the availability of remote sensing data. However, the quantification of water body volume is limited because the existing remote sensing technologies cannot estimate bathymetry data. In this study, Lake Victoria’s surface water extent and volume are estimated by combining the remote sensing and bathymetry data. The surface water extent is determined by feature extraction and classification using Machine Learning (ML). Gaussian Naïve Bayes (GNB), Decision Tree (DT), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost) are the ML algorithms considered. Landsat ETM+images have been used for experimentation. Experimental results concluded that LightGBM and DT are the best and least performing ML algorithms for determining surface extent and volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信