{"title":"同时稀疏表示的漫射光学层析成像精确重建公式","authors":"J. C. Ye, Su Yeon Lee, Y. Bresler","doi":"10.1109/ISBI.2008.4541323","DOIUrl":null,"url":null,"abstract":"Diffuse optical tomography (DOT) is a sensitive and relatively low cost imaging modality. However, the inverse problem of reconstructing optical parameters from scattered light measurements is highly nonlinear due to the nonlinear coupling between the optical coefficients and the photon flux in the diffusion equation. Even though nonlinear iterative methods have been commonly used, such iterative processes are computationally expensive especially for the three dimensional imaging scenario with massive number of detector elements. The main contribution of this paper is a novel non-iterative and exact inversion algorithm when the optical inhomogeneities are sparsely distributed. We show that the problem can be converted into simultaneous sparse representation problem with multiple measurement vectors from compressed sensing framework. The exact reconstruction formula is obtained using simultaneous orthogonal matching pursuit (S-OMP) and a simple two step approach without ever calculating the diffusion equation. Simulation results also confirm our theory.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation\",\"authors\":\"J. C. Ye, Su Yeon Lee, Y. Bresler\",\"doi\":\"10.1109/ISBI.2008.4541323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffuse optical tomography (DOT) is a sensitive and relatively low cost imaging modality. However, the inverse problem of reconstructing optical parameters from scattered light measurements is highly nonlinear due to the nonlinear coupling between the optical coefficients and the photon flux in the diffusion equation. Even though nonlinear iterative methods have been commonly used, such iterative processes are computationally expensive especially for the three dimensional imaging scenario with massive number of detector elements. The main contribution of this paper is a novel non-iterative and exact inversion algorithm when the optical inhomogeneities are sparsely distributed. We show that the problem can be converted into simultaneous sparse representation problem with multiple measurement vectors from compressed sensing framework. The exact reconstruction formula is obtained using simultaneous orthogonal matching pursuit (S-OMP) and a simple two step approach without ever calculating the diffusion equation. Simulation results also confirm our theory.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation
Diffuse optical tomography (DOT) is a sensitive and relatively low cost imaging modality. However, the inverse problem of reconstructing optical parameters from scattered light measurements is highly nonlinear due to the nonlinear coupling between the optical coefficients and the photon flux in the diffusion equation. Even though nonlinear iterative methods have been commonly used, such iterative processes are computationally expensive especially for the three dimensional imaging scenario with massive number of detector elements. The main contribution of this paper is a novel non-iterative and exact inversion algorithm when the optical inhomogeneities are sparsely distributed. We show that the problem can be converted into simultaneous sparse representation problem with multiple measurement vectors from compressed sensing framework. The exact reconstruction formula is obtained using simultaneous orthogonal matching pursuit (S-OMP) and a simple two step approach without ever calculating the diffusion equation. Simulation results also confirm our theory.