同时稀疏表示的漫射光学层析成像精确重建公式

J. C. Ye, Su Yeon Lee, Y. Bresler
{"title":"同时稀疏表示的漫射光学层析成像精确重建公式","authors":"J. C. Ye, Su Yeon Lee, Y. Bresler","doi":"10.1109/ISBI.2008.4541323","DOIUrl":null,"url":null,"abstract":"Diffuse optical tomography (DOT) is a sensitive and relatively low cost imaging modality. However, the inverse problem of reconstructing optical parameters from scattered light measurements is highly nonlinear due to the nonlinear coupling between the optical coefficients and the photon flux in the diffusion equation. Even though nonlinear iterative methods have been commonly used, such iterative processes are computationally expensive especially for the three dimensional imaging scenario with massive number of detector elements. The main contribution of this paper is a novel non-iterative and exact inversion algorithm when the optical inhomogeneities are sparsely distributed. We show that the problem can be converted into simultaneous sparse representation problem with multiple measurement vectors from compressed sensing framework. The exact reconstruction formula is obtained using simultaneous orthogonal matching pursuit (S-OMP) and a simple two step approach without ever calculating the diffusion equation. Simulation results also confirm our theory.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation\",\"authors\":\"J. C. Ye, Su Yeon Lee, Y. Bresler\",\"doi\":\"10.1109/ISBI.2008.4541323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffuse optical tomography (DOT) is a sensitive and relatively low cost imaging modality. However, the inverse problem of reconstructing optical parameters from scattered light measurements is highly nonlinear due to the nonlinear coupling between the optical coefficients and the photon flux in the diffusion equation. Even though nonlinear iterative methods have been commonly used, such iterative processes are computationally expensive especially for the three dimensional imaging scenario with massive number of detector elements. The main contribution of this paper is a novel non-iterative and exact inversion algorithm when the optical inhomogeneities are sparsely distributed. We show that the problem can be converted into simultaneous sparse representation problem with multiple measurement vectors from compressed sensing framework. The exact reconstruction formula is obtained using simultaneous orthogonal matching pursuit (S-OMP) and a simple two step approach without ever calculating the diffusion equation. Simulation results also confirm our theory.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

漫射光学层析成像(DOT)是一种灵敏度高、成本相对较低的成像方式。然而,由于光学系数与扩散方程中光子通量之间的非线性耦合,散射光测量反演光学参数的反演问题是高度非线性的。尽管非线性迭代方法已经被广泛使用,但这种迭代过程的计算成本很高,特别是对于具有大量探测器元素的三维成像场景。本文的主要贡献是在稀疏分布的光学非均匀性条件下提出了一种新的非迭代精确反演算法。我们证明了该问题可以转化为压缩感知框架中多个测量向量的同时稀疏表示问题。在不计算扩散方程的情况下,采用同时正交匹配追踪(S-OMP)和简单的两步法得到了精确的重建公式。仿真结果也证实了我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation
Diffuse optical tomography (DOT) is a sensitive and relatively low cost imaging modality. However, the inverse problem of reconstructing optical parameters from scattered light measurements is highly nonlinear due to the nonlinear coupling between the optical coefficients and the photon flux in the diffusion equation. Even though nonlinear iterative methods have been commonly used, such iterative processes are computationally expensive especially for the three dimensional imaging scenario with massive number of detector elements. The main contribution of this paper is a novel non-iterative and exact inversion algorithm when the optical inhomogeneities are sparsely distributed. We show that the problem can be converted into simultaneous sparse representation problem with multiple measurement vectors from compressed sensing framework. The exact reconstruction formula is obtained using simultaneous orthogonal matching pursuit (S-OMP) and a simple two step approach without ever calculating the diffusion equation. Simulation results also confirm our theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信