使用推断的语义链接搜索文件系统

Deepavali Bhagwat, N. Polyzotis
{"title":"使用推断的语义链接搜索文件系统","authors":"Deepavali Bhagwat, N. Polyzotis","doi":"10.1145/1083356.1083372","DOIUrl":null,"url":null,"abstract":"We describe Eureka, a file system search engine that takes into account the inherent relationships among files in order to improve the rankings of search results. The key idea is to automatically infer semantic links within the file system, and use the structure of the links to determine the importance of different files and essentially bias the result rankings. We discuss the inference of semantic links and describe the design of the Eureka search engine.","PeriodicalId":134809,"journal":{"name":"UK Conference on Hypertext","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Searching a file system using inferred semantic links\",\"authors\":\"Deepavali Bhagwat, N. Polyzotis\",\"doi\":\"10.1145/1083356.1083372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe Eureka, a file system search engine that takes into account the inherent relationships among files in order to improve the rankings of search results. The key idea is to automatically infer semantic links within the file system, and use the structure of the links to determine the importance of different files and essentially bias the result rankings. We discuss the inference of semantic links and describe the design of the Eureka search engine.\",\"PeriodicalId\":134809,\"journal\":{\"name\":\"UK Conference on Hypertext\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UK Conference on Hypertext\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1083356.1083372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK Conference on Hypertext","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1083356.1083372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们描述了Eureka,一个文件系统搜索引擎,它考虑了文件之间的内在关系,以提高搜索结果的排名。其关键思想是自动推断文件系统中的语义链接,并使用链接的结构来确定不同文件的重要性,并从本质上对结果排名进行偏差。我们讨论了语义链接的推理,并描述了Eureka搜索引擎的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Searching a file system using inferred semantic links
We describe Eureka, a file system search engine that takes into account the inherent relationships among files in order to improve the rankings of search results. The key idea is to automatically infer semantic links within the file system, and use the structure of the links to determine the importance of different files and essentially bias the result rankings. We discuss the inference of semantic links and describe the design of the Eureka search engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信