精神分裂症的静息脑电图非线性动态分析研究

Qinglin Zhao, Bin Hu, Yunpeng Li, Hong Peng, Lanlan Li, Quanying Liu, Yang Li, Qiuxia Shi, Jun-Qing Feng
{"title":"精神分裂症的静息脑电图非线性动态分析研究","authors":"Qinglin Zhao, Bin Hu, Yunpeng Li, Hong Peng, Lanlan Li, Quanying Liu, Yang Li, Qiuxia Shi, Jun-Qing Feng","doi":"10.1109/NER.2013.6695977","DOIUrl":null,"url":null,"abstract":"Schizophrenia is a mental disorder that may include delusions, loss of personality, confusion, social withdrawal, psychosis, and bizarre behavior. In this study, we use Electroencephalogram (EEG) signals of the Alpha band to detect the differences between nonlinear EEG features of schizophrenic patients and non-psychiatric controls. EEG signals from 31 schizophrenic patients and 31 age/sex matched normal controls are recorded using 16 electrodes. We calculate permutation entropy, Kolmogorov entropy, the correlation dimension, spectral entropy and the results indicate that the EEG signals from schizophrenics are more complex and irregular than those from normal controls. We compare three feature classifiers (k-Nearest Neighbor, Support Vector Machine and Back-Propagation Neural Network). A feature selection method based on Fisher criterion is used for enhancing the performance of classifiers. The optimal accuracy rate comes from Back-Propagation Neural Network, which is 86.1%. We think that the statistic and classification results make our approach helpful for schizophrenia diagnosis.","PeriodicalId":156952,"journal":{"name":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An Alpha resting EEG study on nonlinear dynamic analysis for schizophrenia\",\"authors\":\"Qinglin Zhao, Bin Hu, Yunpeng Li, Hong Peng, Lanlan Li, Quanying Liu, Yang Li, Qiuxia Shi, Jun-Qing Feng\",\"doi\":\"10.1109/NER.2013.6695977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schizophrenia is a mental disorder that may include delusions, loss of personality, confusion, social withdrawal, psychosis, and bizarre behavior. In this study, we use Electroencephalogram (EEG) signals of the Alpha band to detect the differences between nonlinear EEG features of schizophrenic patients and non-psychiatric controls. EEG signals from 31 schizophrenic patients and 31 age/sex matched normal controls are recorded using 16 electrodes. We calculate permutation entropy, Kolmogorov entropy, the correlation dimension, spectral entropy and the results indicate that the EEG signals from schizophrenics are more complex and irregular than those from normal controls. We compare three feature classifiers (k-Nearest Neighbor, Support Vector Machine and Back-Propagation Neural Network). A feature selection method based on Fisher criterion is used for enhancing the performance of classifiers. The optimal accuracy rate comes from Back-Propagation Neural Network, which is 86.1%. We think that the statistic and classification results make our approach helpful for schizophrenia diagnosis.\",\"PeriodicalId\":156952,\"journal\":{\"name\":\"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2013.6695977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6695977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

精神分裂症是一种精神障碍,可能包括妄想、人格丧失、混乱、社交退缩、精神病和怪异行为。在这项研究中,我们使用脑电图(EEG)的α波段信号来检测精神分裂症患者和非精神分裂症对照组的非线性脑电图特征之间的差异。用16个电极记录31例精神分裂症患者和31例年龄/性别匹配的正常人的脑电图信号。计算排列熵、Kolmogorov熵、相关维数、谱熵,结果表明,精神分裂症患者的脑电图信号比正常人更为复杂和不规则。我们比较了三种特征分类器(k-最近邻,支持向量机和反向传播神经网络)。为了提高分类器的性能,采用了基于Fisher准则的特征选择方法。最优准确率来自于反向传播神经网络,准确率为86.1%。我们认为统计和分类结果使我们的方法对精神分裂症的诊断有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Alpha resting EEG study on nonlinear dynamic analysis for schizophrenia
Schizophrenia is a mental disorder that may include delusions, loss of personality, confusion, social withdrawal, psychosis, and bizarre behavior. In this study, we use Electroencephalogram (EEG) signals of the Alpha band to detect the differences between nonlinear EEG features of schizophrenic patients and non-psychiatric controls. EEG signals from 31 schizophrenic patients and 31 age/sex matched normal controls are recorded using 16 electrodes. We calculate permutation entropy, Kolmogorov entropy, the correlation dimension, spectral entropy and the results indicate that the EEG signals from schizophrenics are more complex and irregular than those from normal controls. We compare three feature classifiers (k-Nearest Neighbor, Support Vector Machine and Back-Propagation Neural Network). A feature selection method based on Fisher criterion is used for enhancing the performance of classifiers. The optimal accuracy rate comes from Back-Propagation Neural Network, which is 86.1%. We think that the statistic and classification results make our approach helpful for schizophrenia diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信