减少TSV泵送

Q. Dinh, K. Kondo, T. Hirato
{"title":"减少TSV泵送","authors":"Q. Dinh, K. Kondo, T. Hirato","doi":"10.1109/3DIC48104.2019.9058846","DOIUrl":null,"url":null,"abstract":"The mismatch in thermal expansion coefficient (TEC) between copper and silicon causes serious problems in three-dimensional (3D) packaging. The common problem is TSV pumping when TSV is exposed to high temperature (400oC-600oC) during the wiring process. The copper pumping destroys wiring above TSV and leads to the failure of electronic devices. Other problem is the area on silicon around the TSV where the transistors cannot be formed due to stress caused by copper when annealing. With our low TEC additive (additive A), copper pumping height in 5× 20 μm p-TEOS TSV was reduced to 0.5 μm from 2.0 μm in case of conventional copper. We also investigated the effect of polyimide which is used as liner layer in the TSV on copper pumping reduction. The first screening result showed that the pumping height of conventional copper in polyimide TSV was only 0.8 μm., compared to 2.0 μm p-TEOS TSV and 1.2 μm O3-TEOS TSV.","PeriodicalId":440556,"journal":{"name":"2019 International 3D Systems Integration Conference (3DIC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of TSV Pumping\",\"authors\":\"Q. Dinh, K. Kondo, T. Hirato\",\"doi\":\"10.1109/3DIC48104.2019.9058846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mismatch in thermal expansion coefficient (TEC) between copper and silicon causes serious problems in three-dimensional (3D) packaging. The common problem is TSV pumping when TSV is exposed to high temperature (400oC-600oC) during the wiring process. The copper pumping destroys wiring above TSV and leads to the failure of electronic devices. Other problem is the area on silicon around the TSV where the transistors cannot be formed due to stress caused by copper when annealing. With our low TEC additive (additive A), copper pumping height in 5× 20 μm p-TEOS TSV was reduced to 0.5 μm from 2.0 μm in case of conventional copper. We also investigated the effect of polyimide which is used as liner layer in the TSV on copper pumping reduction. The first screening result showed that the pumping height of conventional copper in polyimide TSV was only 0.8 μm., compared to 2.0 μm p-TEOS TSV and 1.2 μm O3-TEOS TSV.\",\"PeriodicalId\":440556,\"journal\":{\"name\":\"2019 International 3D Systems Integration Conference (3DIC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International 3D Systems Integration Conference (3DIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIC48104.2019.9058846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International 3D Systems Integration Conference (3DIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIC48104.2019.9058846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铜和硅之间的热膨胀系数(TEC)不匹配导致了三维(3D)封装中的严重问题。在接线过程中,TSV暴露在高温下(400℃-600℃)时,TSV泵送是常见的问题。铜泵送破坏TSV以上的线路,导致电子设备故障。另一个问题是TSV周围硅上的区域,由于退火时铜产生的应力,晶体管无法形成。使用我们的低TEC添加剂(添加剂A),铜在5× 20 μm p-TEOS TSV中的泵送高度从传统铜的2.0 μm降低到0.5 μm。我们还研究了聚酰亚胺作为衬里层在TSV中对铜泵送还原的影响。第一次筛选结果表明,常规铜在聚酰亚胺TSV中的泵送高度仅为0.8 μm。,与2.0 μm - teos TSV和1.2 μm O3-TEOS TSV相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of TSV Pumping
The mismatch in thermal expansion coefficient (TEC) between copper and silicon causes serious problems in three-dimensional (3D) packaging. The common problem is TSV pumping when TSV is exposed to high temperature (400oC-600oC) during the wiring process. The copper pumping destroys wiring above TSV and leads to the failure of electronic devices. Other problem is the area on silicon around the TSV where the transistors cannot be formed due to stress caused by copper when annealing. With our low TEC additive (additive A), copper pumping height in 5× 20 μm p-TEOS TSV was reduced to 0.5 μm from 2.0 μm in case of conventional copper. We also investigated the effect of polyimide which is used as liner layer in the TSV on copper pumping reduction. The first screening result showed that the pumping height of conventional copper in polyimide TSV was only 0.8 μm., compared to 2.0 μm p-TEOS TSV and 1.2 μm O3-TEOS TSV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信