Daubechies小波相关多项式的零点极限锐化

J. Karam
{"title":"Daubechies小波相关多项式的零点极限锐化","authors":"J. Karam","doi":"10.1109/ICCITECHNOL.2011.5762683","DOIUrl":null,"url":null,"abstract":"The construction of Daubechies orthogonal mother wavelet via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with it should exhibit. In this paper, a particular class of polynomials is derived from such construction. It bears as coefficients the ratios of those of the binomial polynomials. Limits for the roots of this family of polynomials are derived and the conditions for obtaining optimum radius are identified.","PeriodicalId":211631,"journal":{"name":"2011 International Conference on Communications and Information Technology (ICCIT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharpening the limits of the zeros of Daubechies wavelets related polynomials\",\"authors\":\"J. Karam\",\"doi\":\"10.1109/ICCITECHNOL.2011.5762683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of Daubechies orthogonal mother wavelet via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with it should exhibit. In this paper, a particular class of polynomials is derived from such construction. It bears as coefficients the ratios of those of the binomial polynomials. Limits for the roots of this family of polynomials are derived and the conditions for obtaining optimum radius are identified.\",\"PeriodicalId\":211631,\"journal\":{\"name\":\"2011 International Conference on Communications and Information Technology (ICCIT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHNOL.2011.5762683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHNOL.2011.5762683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过双通道完美重构滤波器组构造多贝西正交母小波,需要确定滤波器的系数和与之相关的二项式多项式的根必须满足的必要条件。本文从这种构造中导出了一类特殊的多项式。它的系数是二项式多项式的比值。导出了这类多项式根的极限,并确定了获得最优半径的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharpening the limits of the zeros of Daubechies wavelets related polynomials
The construction of Daubechies orthogonal mother wavelet via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with it should exhibit. In this paper, a particular class of polynomials is derived from such construction. It bears as coefficients the ratios of those of the binomial polynomials. Limits for the roots of this family of polynomials are derived and the conditions for obtaining optimum radius are identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信