利用相对头部和手部目标特征预测三维运动目标选择中的意图

Juan Sebastián Casallas, J. Oliver, Jonathan W. Kelly, F. Mérienne, S. Garbaya
{"title":"利用相对头部和手部目标特征预测三维运动目标选择中的意图","authors":"Juan Sebastián Casallas, J. Oliver, Jonathan W. Kelly, F. Mérienne, S. Garbaya","doi":"10.1109/VR.2014.6802050","DOIUrl":null,"url":null,"abstract":"Selection of moving targets is a common, yet complex task in human-computer interaction (HCI) and virtual reality (VR). Predicting user intention may be beneficial to address the challenges inherent in interaction techniques for moving-target selection. This article extends previous models by integrating relative head-target and hand-target features to predict intended moving targets. The features are calculated in a time window ending at roughly two-thirds of the total target selection time and evaluated using decision trees. With two targets, this model is able to predict user choice with up to ~ 72% accuracy on general moving-target selection tasks and up to ~ 78% by also including task-related target properties.","PeriodicalId":408559,"journal":{"name":"2014 IEEE Virtual Reality (VR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using relative head and hand-target features to predict intention in 3D moving-target selection\",\"authors\":\"Juan Sebastián Casallas, J. Oliver, Jonathan W. Kelly, F. Mérienne, S. Garbaya\",\"doi\":\"10.1109/VR.2014.6802050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selection of moving targets is a common, yet complex task in human-computer interaction (HCI) and virtual reality (VR). Predicting user intention may be beneficial to address the challenges inherent in interaction techniques for moving-target selection. This article extends previous models by integrating relative head-target and hand-target features to predict intended moving targets. The features are calculated in a time window ending at roughly two-thirds of the total target selection time and evaluated using decision trees. With two targets, this model is able to predict user choice with up to ~ 72% accuracy on general moving-target selection tasks and up to ~ 78% by also including task-related target properties.\",\"PeriodicalId\":408559,\"journal\":{\"name\":\"2014 IEEE Virtual Reality (VR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Virtual Reality (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2014.6802050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Virtual Reality (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2014.6802050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在人机交互(HCI)和虚拟现实(VR)中,运动目标的选择是一个常见而又复杂的任务。预测用户意图可能有助于解决移动目标选择交互技术中固有的挑战。本文通过整合相对头部目标和手目标特征来扩展先前的模型,以预测预期的移动目标。特征在大约三分之二的总目标选择时间结束的时间窗口内计算,并使用决策树进行评估。对于两个目标,该模型能够在一般移动目标选择任务上预测用户选择的准确率高达72%,并且在包含任务相关目标属性的情况下,该模型能够预测用户选择的准确率高达78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using relative head and hand-target features to predict intention in 3D moving-target selection
Selection of moving targets is a common, yet complex task in human-computer interaction (HCI) and virtual reality (VR). Predicting user intention may be beneficial to address the challenges inherent in interaction techniques for moving-target selection. This article extends previous models by integrating relative head-target and hand-target features to predict intended moving targets. The features are calculated in a time window ending at roughly two-thirds of the total target selection time and evaluated using decision trees. With two targets, this model is able to predict user choice with up to ~ 72% accuracy on general moving-target selection tasks and up to ~ 78% by also including task-related target properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信