血液显微多场图像拼接方法的研究

Zhangyong Li, Hui Liu, Mengxi Ju, Fuqu Chen, Xinwei Li
{"title":"血液显微多场图像拼接方法的研究","authors":"Zhangyong Li, Hui Liu, Mengxi Ju, Fuqu Chen, Xinwei Li","doi":"10.1109/ICBCB.2019.8854666","DOIUrl":null,"url":null,"abstract":"In the diagnosis of medical blood diseases, there are contra-dictions between the clear view and the size of view under the microscope. In order to obtain clear blood cell images under a large view, this paper proposes an image stitching method for multi-view blood microscopy images. The method firstly preprocesses the input image sequence, and then uses the SIFT feature and the local LBP feature to extract the feature points of the image sequence, obtains the matching point pairs according to the threshold method, and then uses the improved RANSAC algorithm to calculate the homography matrix between the images. Finally, the weighted average in image fusion is used to realize the seamless stitching of multiview images. The experimental results show that the improved feature detection algorithm has good performance in the rotary image, blurry image and distorted cell image. The improved RANSAC algorithm effectively improves the computational efficiency of the image, and finally achieves multi-view blood display with high efficiency and seamless stitching of micro images.","PeriodicalId":136995,"journal":{"name":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Method of Blood Microscopic Multi-field Image Stitching\",\"authors\":\"Zhangyong Li, Hui Liu, Mengxi Ju, Fuqu Chen, Xinwei Li\",\"doi\":\"10.1109/ICBCB.2019.8854666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the diagnosis of medical blood diseases, there are contra-dictions between the clear view and the size of view under the microscope. In order to obtain clear blood cell images under a large view, this paper proposes an image stitching method for multi-view blood microscopy images. The method firstly preprocesses the input image sequence, and then uses the SIFT feature and the local LBP feature to extract the feature points of the image sequence, obtains the matching point pairs according to the threshold method, and then uses the improved RANSAC algorithm to calculate the homography matrix between the images. Finally, the weighted average in image fusion is used to realize the seamless stitching of multiview images. The experimental results show that the improved feature detection algorithm has good performance in the rotary image, blurry image and distorted cell image. The improved RANSAC algorithm effectively improves the computational efficiency of the image, and finally achieves multi-view blood display with high efficiency and seamless stitching of micro images.\",\"PeriodicalId\":136995,\"journal\":{\"name\":\"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBCB.2019.8854666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB.2019.8854666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学血液病的诊断中,显微镜下视野清晰与视野大小存在矛盾。为了在大视角下获得清晰的血细胞图像,提出了一种多视角血液显微图像的图像拼接方法。该方法首先对输入图像序列进行预处理,然后利用SIFT特征和局部LBP特征提取图像序列的特征点,根据阈值法得到匹配点对,然后利用改进的RANSAC算法计算图像之间的单应性矩阵。最后,利用图像融合中的加权平均实现多视点图像的无缝拼接。实验结果表明,改进的特征检测算法在旋转图像、模糊图像和变形细胞图像中都有良好的检测效果。改进的RANSAC算法有效地提高了图像的计算效率,最终实现了微图像高效无缝拼接的多视角血液显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the Method of Blood Microscopic Multi-field Image Stitching
In the diagnosis of medical blood diseases, there are contra-dictions between the clear view and the size of view under the microscope. In order to obtain clear blood cell images under a large view, this paper proposes an image stitching method for multi-view blood microscopy images. The method firstly preprocesses the input image sequence, and then uses the SIFT feature and the local LBP feature to extract the feature points of the image sequence, obtains the matching point pairs according to the threshold method, and then uses the improved RANSAC algorithm to calculate the homography matrix between the images. Finally, the weighted average in image fusion is used to realize the seamless stitching of multiview images. The experimental results show that the improved feature detection algorithm has good performance in the rotary image, blurry image and distorted cell image. The improved RANSAC algorithm effectively improves the computational efficiency of the image, and finally achieves multi-view blood display with high efficiency and seamless stitching of micro images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信