构建用于恶意软件检测的机器学习分类器

Zane Markel, Michael Bilzor
{"title":"构建用于恶意软件检测的机器学习分类器","authors":"Zane Markel, Michael Bilzor","doi":"10.1109/WATER.2014.7015757","DOIUrl":null,"url":null,"abstract":"Current signature-based antivirus software is ineffective against many modern malicious software threats. Machine learning methods can be used to create more effective antimalware software, capable of detecting even zero-day attacks. Some studies have investigated the plausibility of applying machine learning to malware detection, primarily using features from n-grams of an executables file's byte code. We propose an approach that primarily learns from metadata, mostly contained in the headers of executable files, specifically the Windows Portable Executable 32-bit (PE32) file format. Our experiments indicate that executable file metadata is highly discriminative between malware and benign software. We also employ various machine learning methods, finding that Decision Tree classifiers outperform Logistic Regression and Naive Bayes in this setting. We analyze various features of the PE32 header and identify those most suitable for machine learning classifiers. Finally, we evaluate changes in classifier performance when the malware prevalence (fraction of malware versus benign software) is varied.","PeriodicalId":430865,"journal":{"name":"2014 Second Workshop on Anti-malware Testing Research (WATeR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Building a machine learning classifier for malware detection\",\"authors\":\"Zane Markel, Michael Bilzor\",\"doi\":\"10.1109/WATER.2014.7015757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current signature-based antivirus software is ineffective against many modern malicious software threats. Machine learning methods can be used to create more effective antimalware software, capable of detecting even zero-day attacks. Some studies have investigated the plausibility of applying machine learning to malware detection, primarily using features from n-grams of an executables file's byte code. We propose an approach that primarily learns from metadata, mostly contained in the headers of executable files, specifically the Windows Portable Executable 32-bit (PE32) file format. Our experiments indicate that executable file metadata is highly discriminative between malware and benign software. We also employ various machine learning methods, finding that Decision Tree classifiers outperform Logistic Regression and Naive Bayes in this setting. We analyze various features of the PE32 header and identify those most suitable for machine learning classifiers. Finally, we evaluate changes in classifier performance when the malware prevalence (fraction of malware versus benign software) is varied.\",\"PeriodicalId\":430865,\"journal\":{\"name\":\"2014 Second Workshop on Anti-malware Testing Research (WATeR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Second Workshop on Anti-malware Testing Research (WATeR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WATER.2014.7015757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Second Workshop on Anti-malware Testing Research (WATeR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WATER.2014.7015757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

当前基于签名的防病毒软件对许多现代恶意软件的威胁是无效的。机器学习方法可以用来创建更有效的反恶意软件,甚至能够检测零日攻击。一些研究调查了将机器学习应用于恶意软件检测的可行性,主要使用可执行文件字节码的n-grams特征。我们提出了一种主要从元数据中学习的方法,元数据主要包含在可执行文件的头文件中,特别是Windows Portable executable 32位(PE32)文件格式。实验表明,可执行文件元数据对恶意软件和良性软件具有很强的区分能力。我们还采用了各种机器学习方法,发现决策树分类器在这种情况下优于逻辑回归和朴素贝叶斯。我们分析了PE32标头的各种特征,并确定了最适合机器学习分类器的特征。最后,我们评估了恶意软件流行率(恶意软件与良性软件的比例)变化时分类器性能的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building a machine learning classifier for malware detection
Current signature-based antivirus software is ineffective against many modern malicious software threats. Machine learning methods can be used to create more effective antimalware software, capable of detecting even zero-day attacks. Some studies have investigated the plausibility of applying machine learning to malware detection, primarily using features from n-grams of an executables file's byte code. We propose an approach that primarily learns from metadata, mostly contained in the headers of executable files, specifically the Windows Portable Executable 32-bit (PE32) file format. Our experiments indicate that executable file metadata is highly discriminative between malware and benign software. We also employ various machine learning methods, finding that Decision Tree classifiers outperform Logistic Regression and Naive Bayes in this setting. We analyze various features of the PE32 header and identify those most suitable for machine learning classifiers. Finally, we evaluate changes in classifier performance when the malware prevalence (fraction of malware versus benign software) is varied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信