脑电协方差矩阵的等距映射降维算法

Egor Krivov, M. Belyaev
{"title":"脑电协方差矩阵的等距映射降维算法","authors":"Egor Krivov, M. Belyaev","doi":"10.1109/IWW-BCI.2016.7457448","DOIUrl":null,"url":null,"abstract":"This paper presents new approach to braincomputer interface construction. Most algorithms for EEG classification use spatial covariance matrices, that contain information about synchronisation and desynchronisation in human brain. Suggested algorithm involves Riemannian geometry in the space of symmetric and positive-definite matrices to measure distances between covariance matrices in more accurate fashion. Then Isomap algorithm is applied to the Riemannian pairwise distances to locate manifold, corresponding to human EEG signals, and arrange points, corresponding to covariance matrices, in low-dimensional space, preserving geodesical distances. Finally, linear discriminant analysis is applied for classification. Suggested algorithm is tested on Berlin BCI dataset and compared with state-of-the-art algorithms common spatial patterns and classification in tangent space.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Dimensionality reduction with isomap algorithm for EEG covariance matrices\",\"authors\":\"Egor Krivov, M. Belyaev\",\"doi\":\"10.1109/IWW-BCI.2016.7457448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new approach to braincomputer interface construction. Most algorithms for EEG classification use spatial covariance matrices, that contain information about synchronisation and desynchronisation in human brain. Suggested algorithm involves Riemannian geometry in the space of symmetric and positive-definite matrices to measure distances between covariance matrices in more accurate fashion. Then Isomap algorithm is applied to the Riemannian pairwise distances to locate manifold, corresponding to human EEG signals, and arrange points, corresponding to covariance matrices, in low-dimensional space, preserving geodesical distances. Finally, linear discriminant analysis is applied for classification. Suggested algorithm is tested on Berlin BCI dataset and compared with state-of-the-art algorithms common spatial patterns and classification in tangent space.\",\"PeriodicalId\":208670,\"journal\":{\"name\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2016.7457448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了构建脑机接口的新方法。大多数脑电分类算法使用空间协方差矩阵,其中包含人脑同步和非同步的信息。建议的算法涉及对称和正定矩阵空间中的黎曼几何,以更精确的方式测量协方差矩阵之间的距离。然后将Isomap算法应用于黎曼对距离,在低维空间中定位人脑电信号对应的流形,排列协方差矩阵对应的点,保持测地线距离。最后,采用线性判别分析进行分类。在Berlin BCI数据集上对所提出的算法进行了测试,并与切线空间的常用空间模式和分类算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensionality reduction with isomap algorithm for EEG covariance matrices
This paper presents new approach to braincomputer interface construction. Most algorithms for EEG classification use spatial covariance matrices, that contain information about synchronisation and desynchronisation in human brain. Suggested algorithm involves Riemannian geometry in the space of symmetric and positive-definite matrices to measure distances between covariance matrices in more accurate fashion. Then Isomap algorithm is applied to the Riemannian pairwise distances to locate manifold, corresponding to human EEG signals, and arrange points, corresponding to covariance matrices, in low-dimensional space, preserving geodesical distances. Finally, linear discriminant analysis is applied for classification. Suggested algorithm is tested on Berlin BCI dataset and compared with state-of-the-art algorithms common spatial patterns and classification in tangent space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信