{"title":"具有径向基输入函数的cnn","authors":"M. Yalçin, C. Guzelis","doi":"10.1109/CNNA.1996.566562","DOIUrl":null,"url":null,"abstract":"This paper proposes a cellular neural network (CNN) model with radial basis input function (radial basis input CNN) for improving function approximation ability of CNNs. The model can be viewed as a cascade of two units: the first unit is a multi-input, multi-output radial basis function network (RBFN), the second unit is the original CNN model. The weights and centers of the RBFN unit are chosen identical for all RBFN outputs yielding a space-invariant connection weight pattern over the network. With such a weight sharing property, the proposed model becomes a special kind of nonlinear B-template CNN. The ability of the radial basis input CNN model in approximation to functions as its input-(steady state) output mapping is examined on an edge detection task for noisy images. A modified version of the recurrent perceptron learning algorithm (RPLA) is used for the training radial basis input CNN.","PeriodicalId":222524,"journal":{"name":"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNNs with radial basis input function\",\"authors\":\"M. Yalçin, C. Guzelis\",\"doi\":\"10.1109/CNNA.1996.566562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a cellular neural network (CNN) model with radial basis input function (radial basis input CNN) for improving function approximation ability of CNNs. The model can be viewed as a cascade of two units: the first unit is a multi-input, multi-output radial basis function network (RBFN), the second unit is the original CNN model. The weights and centers of the RBFN unit are chosen identical for all RBFN outputs yielding a space-invariant connection weight pattern over the network. With such a weight sharing property, the proposed model becomes a special kind of nonlinear B-template CNN. The ability of the radial basis input CNN model in approximation to functions as its input-(steady state) output mapping is examined on an edge detection task for noisy images. A modified version of the recurrent perceptron learning algorithm (RPLA) is used for the training radial basis input CNN.\",\"PeriodicalId\":222524,\"journal\":{\"name\":\"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1996.566562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1996.566562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposes a cellular neural network (CNN) model with radial basis input function (radial basis input CNN) for improving function approximation ability of CNNs. The model can be viewed as a cascade of two units: the first unit is a multi-input, multi-output radial basis function network (RBFN), the second unit is the original CNN model. The weights and centers of the RBFN unit are chosen identical for all RBFN outputs yielding a space-invariant connection weight pattern over the network. With such a weight sharing property, the proposed model becomes a special kind of nonlinear B-template CNN. The ability of the radial basis input CNN model in approximation to functions as its input-(steady state) output mapping is examined on an edge detection task for noisy images. A modified version of the recurrent perceptron learning algorithm (RPLA) is used for the training radial basis input CNN.