低信噪比环境下两阶段稀疏重建的到达方向估计

Koredianto Usman, R. Magdalena, M. Ramdhani
{"title":"低信噪比环境下两阶段稀疏重建的到达方向估计","authors":"Koredianto Usman, R. Magdalena, M. Ramdhani","doi":"10.1109/ICCEREC.2018.8712106","DOIUrl":null,"url":null,"abstract":"Sparse-based reconstruction for direction of arrival estimation (DoA) offers an advantage of small data size compared to the conventional DoA estimation algorithm such as MVDR, MUSIC, or ESPRIT. Sparse-based reconstruction algorithm can even estimated the DoA using one snapshot. Given this advantage, the sparse-based reconstruction algorithms such as $L$1-norm minimization using CVX-programming or greedy algorithm usually suffers in high noise environment (low SNR) which manifest by a lot of false spikes in DoA estimation spectrum. In this paper we proposed two-stages sparse reconstruction method to estimate the DoA to mitigate this problem. In this scheme, DoA is estimated twice using a greedy based algorithm to get a high resolution DoA estimate, and then the false spikes are removed using the L1 - L2 algorithm. Compared to the conventional method, the proposed method has advantage of much smaller data and robust in low noise condition.","PeriodicalId":250054,"journal":{"name":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direction of Arrival Estimation in Low SNR Environment using Two Stages Sparse Reconstruction\",\"authors\":\"Koredianto Usman, R. Magdalena, M. Ramdhani\",\"doi\":\"10.1109/ICCEREC.2018.8712106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse-based reconstruction for direction of arrival estimation (DoA) offers an advantage of small data size compared to the conventional DoA estimation algorithm such as MVDR, MUSIC, or ESPRIT. Sparse-based reconstruction algorithm can even estimated the DoA using one snapshot. Given this advantage, the sparse-based reconstruction algorithms such as $L$1-norm minimization using CVX-programming or greedy algorithm usually suffers in high noise environment (low SNR) which manifest by a lot of false spikes in DoA estimation spectrum. In this paper we proposed two-stages sparse reconstruction method to estimate the DoA to mitigate this problem. In this scheme, DoA is estimated twice using a greedy based algorithm to get a high resolution DoA estimate, and then the false spikes are removed using the L1 - L2 algorithm. Compared to the conventional method, the proposed method has advantage of much smaller data and robust in low noise condition.\",\"PeriodicalId\":250054,\"journal\":{\"name\":\"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEREC.2018.8712106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2018.8712106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的DoA估计算法(如MVDR、MUSIC或ESPRIT)相比,基于稀疏的到达方向估计(DoA)重建具有数据量小的优点。基于稀疏的重建算法甚至可以使用一个快照估计DoA。考虑到这一优势,基于稀疏的重构算法,如使用cvx编程或贪心算法的L - 1范数最小化算法,通常在高噪声环境(低信噪比)下存在大量的DoA估计谱假尖峰。为了解决这一问题,本文提出了两阶段稀疏重建方法来估计DoA。在该方案中,首先使用贪婪算法对DoA进行两次估计,得到高分辨率的DoA估计,然后使用L1 - L2算法去除假峰值。与传统方法相比,该方法具有数据量小、低噪声条件下的鲁棒性好等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direction of Arrival Estimation in Low SNR Environment using Two Stages Sparse Reconstruction
Sparse-based reconstruction for direction of arrival estimation (DoA) offers an advantage of small data size compared to the conventional DoA estimation algorithm such as MVDR, MUSIC, or ESPRIT. Sparse-based reconstruction algorithm can even estimated the DoA using one snapshot. Given this advantage, the sparse-based reconstruction algorithms such as $L$1-norm minimization using CVX-programming or greedy algorithm usually suffers in high noise environment (low SNR) which manifest by a lot of false spikes in DoA estimation spectrum. In this paper we proposed two-stages sparse reconstruction method to estimate the DoA to mitigate this problem. In this scheme, DoA is estimated twice using a greedy based algorithm to get a high resolution DoA estimate, and then the false spikes are removed using the L1 - L2 algorithm. Compared to the conventional method, the proposed method has advantage of much smaller data and robust in low noise condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信