一种基于人脸-计算机界面共享控制的新型无肢变结构轮椅

Bo Zhu, Daohui Zhang, Yaqi Chu, Xingang Zhao
{"title":"一种基于人脸-计算机界面共享控制的新型无肢变结构轮椅","authors":"Bo Zhu, Daohui Zhang, Yaqi Chu, Xingang Zhao","doi":"10.1109/icra46639.2022.9811571","DOIUrl":null,"url":null,"abstract":"In order to meet the mobility and physical activity needs of people with impaired limbs function, a novel limbs-free variable structure wheelchair system controled by face-computer interface (FCI) was developed in this study. FCI used facial electromyography (fEMG) as a human intention recognition method from 6 facial movements, and the accuracy of intent recognition reached 97.6% under a series of offline optimization including channel optimization based on the Hilbert transform to obtain the envelope of fEMG, features optimization, and channel-independent model optimization. A collection of finite state machines (FSM) was used to control the movement and structural changes of the wheelchair. A shared control strategy called “ Keep Action after Take Over (KAaTO) “ that can reduce user fatigue while increasing safety was used in long-distance movement control of wheelchair. To test the performance of the system, in the braking distance test experiment, the result of 0.429m under KAaTO was better than the EMG-based discrete command control and speech command control method. Finally, an outdoor long-distance control pilot experiment proved the superior performance of the developed system.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Limbs-Free Variable Structure Wheelchair based on Face-Computer Interface (FCI) with Shared Control\",\"authors\":\"Bo Zhu, Daohui Zhang, Yaqi Chu, Xingang Zhao\",\"doi\":\"10.1109/icra46639.2022.9811571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the mobility and physical activity needs of people with impaired limbs function, a novel limbs-free variable structure wheelchair system controled by face-computer interface (FCI) was developed in this study. FCI used facial electromyography (fEMG) as a human intention recognition method from 6 facial movements, and the accuracy of intent recognition reached 97.6% under a series of offline optimization including channel optimization based on the Hilbert transform to obtain the envelope of fEMG, features optimization, and channel-independent model optimization. A collection of finite state machines (FSM) was used to control the movement and structural changes of the wheelchair. A shared control strategy called “ Keep Action after Take Over (KAaTO) “ that can reduce user fatigue while increasing safety was used in long-distance movement control of wheelchair. To test the performance of the system, in the braking distance test experiment, the result of 0.429m under KAaTO was better than the EMG-based discrete command control and speech command control method. Finally, an outdoor long-distance control pilot experiment proved the superior performance of the developed system.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了满足肢体功能障碍人群的移动和体育活动需求,本研究开发了一种基于人脸-计算机接口(FCI)控制的无肢体可变结构轮椅系统。FCI将面部肌电图(facial electromyography, fEMG)作为人类6个面部动作的意图识别方法,在基于Hilbert变换获取fEMG包络线的通道优化、特征优化、与通道无关的模型优化等一系列离线优化下,意图识别准确率达到97.6%。利用有限状态机(FSM)集合控制轮椅的运动和结构变化。在轮椅的远距离运动控制中,采用了既能减少使用者疲劳又能提高安全性的“接管后继续行动”(KAaTO)共享控制策略。为了测试系统的性能,在KAaTO下的制动距离测试实验中,0.429m的结果优于基于肌电图的离散命令控制和语音命令控制方法。最后,通过室外远程控制先导试验,验证了所开发系统的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Limbs-Free Variable Structure Wheelchair based on Face-Computer Interface (FCI) with Shared Control
In order to meet the mobility and physical activity needs of people with impaired limbs function, a novel limbs-free variable structure wheelchair system controled by face-computer interface (FCI) was developed in this study. FCI used facial electromyography (fEMG) as a human intention recognition method from 6 facial movements, and the accuracy of intent recognition reached 97.6% under a series of offline optimization including channel optimization based on the Hilbert transform to obtain the envelope of fEMG, features optimization, and channel-independent model optimization. A collection of finite state machines (FSM) was used to control the movement and structural changes of the wheelchair. A shared control strategy called “ Keep Action after Take Over (KAaTO) “ that can reduce user fatigue while increasing safety was used in long-distance movement control of wheelchair. To test the performance of the system, in the braking distance test experiment, the result of 0.429m under KAaTO was better than the EMG-based discrete command control and speech command control method. Finally, an outdoor long-distance control pilot experiment proved the superior performance of the developed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信