一种增强的高光谱太赫兹图像自动分割特征集

Henrike Stephani, B. Heise, S. Katletz, K. Wiesauer, D. Molter, J. Jonuscheit, R. Beigang
{"title":"一种增强的高光谱太赫兹图像自动分割特征集","authors":"Henrike Stephani, B. Heise, S. Katletz, K. Wiesauer, D. Molter, J. Jonuscheit, R. Beigang","doi":"10.1109/IMVIP.2011.34","DOIUrl":null,"url":null,"abstract":"Terahertz time-domain spectroscopic imaging (THz-TDS imaging) producesimages with hundreds of channels. Automatic as well as manual imageanalysis is therefore difficult. We propose to use a feature set thatreduces the number of channels down to 21 and still preserves all importantinformation. Both spectral and time-domain features areincluded in this set, and thereby information aboutdifferent content is gained. We show the practicalapplicability of this approach, by using it on images from different areas of interest. Wefurthermore illustrate its advantages to the classical approach byperforming a clustering-based image segmentation on the full spectraldata and the proposed feature set. Using this reduced but representative information improves thesegmentation quality and makes THz-TDS imageprocessing and segmentation feasible and less prone to the``curse of dimensionality''.","PeriodicalId":179414,"journal":{"name":"2011 Irish Machine Vision and Image Processing Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Feature Set for Enhanced Automatic Segmentation of Hyperspectral Terahertz Images\",\"authors\":\"Henrike Stephani, B. Heise, S. Katletz, K. Wiesauer, D. Molter, J. Jonuscheit, R. Beigang\",\"doi\":\"10.1109/IMVIP.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terahertz time-domain spectroscopic imaging (THz-TDS imaging) producesimages with hundreds of channels. Automatic as well as manual imageanalysis is therefore difficult. We propose to use a feature set thatreduces the number of channels down to 21 and still preserves all importantinformation. Both spectral and time-domain features areincluded in this set, and thereby information aboutdifferent content is gained. We show the practicalapplicability of this approach, by using it on images from different areas of interest. Wefurthermore illustrate its advantages to the classical approach byperforming a clustering-based image segmentation on the full spectraldata and the proposed feature set. Using this reduced but representative information improves thesegmentation quality and makes THz-TDS imageprocessing and segmentation feasible and less prone to the``curse of dimensionality''.\",\"PeriodicalId\":179414,\"journal\":{\"name\":\"2011 Irish Machine Vision and Image Processing Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Irish Machine Vision and Image Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMVIP.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Irish Machine Vision and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

太赫兹时域光谱成像(THz-TDS成像)产生具有数百个通道的图像。因此,自动和手动图像分析是困难的。我们建议使用一个功能集,将通道数量减少到21个,并且仍然保留所有重要信息。该集合同时包含了频谱和时域特征,从而获得了不同内容的信息。我们通过在不同兴趣领域的图像上使用它来展示这种方法的实际适用性。我们进一步通过对全光谱数据和所提出的特征集执行基于聚类的图像分割来说明其优于经典方法的优点。利用这些简化但具有代表性的信息,提高了分割质量,使太赫兹- tds图像处理和分割可行,不易受到“维度诅咒”的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Feature Set for Enhanced Automatic Segmentation of Hyperspectral Terahertz Images
Terahertz time-domain spectroscopic imaging (THz-TDS imaging) producesimages with hundreds of channels. Automatic as well as manual imageanalysis is therefore difficult. We propose to use a feature set thatreduces the number of channels down to 21 and still preserves all importantinformation. Both spectral and time-domain features areincluded in this set, and thereby information aboutdifferent content is gained. We show the practicalapplicability of this approach, by using it on images from different areas of interest. Wefurthermore illustrate its advantages to the classical approach byperforming a clustering-based image segmentation on the full spectraldata and the proposed feature set. Using this reduced but representative information improves thesegmentation quality and makes THz-TDS imageprocessing and segmentation feasible and less prone to the``curse of dimensionality''.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信