基于可加性高阶核的LS-SVM图像修复

Qi Kaijie, Jiang Ruirui, Yang Yanxi, Zhang Fan
{"title":"基于可加性高阶核的LS-SVM图像修复","authors":"Qi Kaijie, Jiang Ruirui, Yang Yanxi, Zhang Fan","doi":"10.1109/ICIVC.2017.7984587","DOIUrl":null,"url":null,"abstract":"This paper discusses the application of least squares support vector machine (LS-SVM) in image inpainting. The data with strong correlation with the damaged area are selected to train the LS-SVM model, and then predict the damaged parts with the obtained model. In order to make full use of the correlation in the image, this paper employs the additive high order kernel function to improve the prediction accuracy of LS-SVM model. The experimental results show that the presented LS-SVM model improves the inpainting obviously.","PeriodicalId":181522,"journal":{"name":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image inpainting with LS-SVM based on additive high order kernel\",\"authors\":\"Qi Kaijie, Jiang Ruirui, Yang Yanxi, Zhang Fan\",\"doi\":\"10.1109/ICIVC.2017.7984587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the application of least squares support vector machine (LS-SVM) in image inpainting. The data with strong correlation with the damaged area are selected to train the LS-SVM model, and then predict the damaged parts with the obtained model. In order to make full use of the correlation in the image, this paper employs the additive high order kernel function to improve the prediction accuracy of LS-SVM model. The experimental results show that the presented LS-SVM model improves the inpainting obviously.\",\"PeriodicalId\":181522,\"journal\":{\"name\":\"2017 2nd International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC.2017.7984587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2017.7984587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

讨论了最小二乘支持向量机(LS-SVM)在图像修复中的应用。选取与损伤区域相关性较强的数据训练LS-SVM模型,利用得到的模型对损伤部位进行预测。为了充分利用图像中的相关性,本文采用加性高阶核函数来提高LS-SVM模型的预测精度。实验结果表明,所提出的LS-SVM模型明显改善了图像的绘制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image inpainting with LS-SVM based on additive high order kernel
This paper discusses the application of least squares support vector machine (LS-SVM) in image inpainting. The data with strong correlation with the damaged area are selected to train the LS-SVM model, and then predict the damaged parts with the obtained model. In order to make full use of the correlation in the image, this paper employs the additive high order kernel function to improve the prediction accuracy of LS-SVM model. The experimental results show that the presented LS-SVM model improves the inpainting obviously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信