通过神经网络进行模拟计算

H. Siegelmann, Eduardo Sontag
{"title":"通过神经网络进行模拟计算","authors":"H. Siegelmann, Eduardo Sontag","doi":"10.1109/ISTCS.1993.253479","DOIUrl":null,"url":null,"abstract":"The authors pursue a particular approach to analog computation, based on dynamical systems of the type used in neural networks research. The systems have a fixed structure, invariant in time, corresponding to an unchanging number of 'neurons'. If allowed exponential time for computation, they turn out to have unbounded power. However, under polynomial-time constraints there are limits on their capabilities, though being more powerful than Turing machines. These networks are not likely to solve polynomially-NP-hard problems, as the equality 'P=NP' implies the almost complete collapse of the standard polynomial hierarchy. In contrast to classical computational models, the models studied exhibit at least some robustness with respect to noise and implementation errors.<<ETX>>","PeriodicalId":281109,"journal":{"name":"[1993] The 2nd Israel Symposium on Theory and Computing Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"412","resultStr":"{\"title\":\"Analog computation via neural networks\",\"authors\":\"H. Siegelmann, Eduardo Sontag\",\"doi\":\"10.1109/ISTCS.1993.253479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors pursue a particular approach to analog computation, based on dynamical systems of the type used in neural networks research. The systems have a fixed structure, invariant in time, corresponding to an unchanging number of 'neurons'. If allowed exponential time for computation, they turn out to have unbounded power. However, under polynomial-time constraints there are limits on their capabilities, though being more powerful than Turing machines. These networks are not likely to solve polynomially-NP-hard problems, as the equality 'P=NP' implies the almost complete collapse of the standard polynomial hierarchy. In contrast to classical computational models, the models studied exhibit at least some robustness with respect to noise and implementation errors.<<ETX>>\",\"PeriodicalId\":281109,\"journal\":{\"name\":\"[1993] The 2nd Israel Symposium on Theory and Computing Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"412\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] The 2nd Israel Symposium on Theory and Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTCS.1993.253479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] The 2nd Israel Symposium on Theory and Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTCS.1993.253479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 412

摘要

作者追求一种特殊的模拟计算方法,基于神经网络研究中使用的类型的动态系统。这些系统具有固定的结构,在时间上是不变的,对应于固定数量的“神经元”。如果计算时间是指数级的,它们就会有无限的能力。然而,在多项式时间的约束下,它们的能力是有限的,尽管它们比图灵机更强大。这些网络不太可能解决多项式-NP困难的问题,因为等式“P=NP”意味着标准多项式层次结构几乎完全崩溃。与经典计算模型相比,所研究的模型在噪声和实现误差方面至少表现出一定的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analog computation via neural networks
The authors pursue a particular approach to analog computation, based on dynamical systems of the type used in neural networks research. The systems have a fixed structure, invariant in time, corresponding to an unchanging number of 'neurons'. If allowed exponential time for computation, they turn out to have unbounded power. However, under polynomial-time constraints there are limits on their capabilities, though being more powerful than Turing machines. These networks are not likely to solve polynomially-NP-hard problems, as the equality 'P=NP' implies the almost complete collapse of the standard polynomial hierarchy. In contrast to classical computational models, the models studied exhibit at least some robustness with respect to noise and implementation errors.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信