{"title":"柔性机器人动力学建模的动态递归神经网络","authors":"L. Jin, M. Gupta, P. Nikiforuk","doi":"10.1109/ISIC.1995.525045","DOIUrl":null,"url":null,"abstract":"The identification of a general class of multi-input and multi-output (MIMO) discrete-time nonlinear systems expressed in the state space form is studied using dynamic recurrent neural network (DRNN) approach. A novel discrete-time DRNN, which is represented by a set of parameterized nonlinear difference equations and has the universal approximation capability, is proposed for modeling unknown discrete-time nonlinear systems. Dynamic backpropagation learning algorithm is discussed extensively in order to carry out the modeling task using the input-output data. A simulation example of modeling flexible robot dynamics is provided to demonstrate the usefulness of the proposed technique.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic recurrent neural networks for modeling flexible robot dynamics\",\"authors\":\"L. Jin, M. Gupta, P. Nikiforuk\",\"doi\":\"10.1109/ISIC.1995.525045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of a general class of multi-input and multi-output (MIMO) discrete-time nonlinear systems expressed in the state space form is studied using dynamic recurrent neural network (DRNN) approach. A novel discrete-time DRNN, which is represented by a set of parameterized nonlinear difference equations and has the universal approximation capability, is proposed for modeling unknown discrete-time nonlinear systems. Dynamic backpropagation learning algorithm is discussed extensively in order to carry out the modeling task using the input-output data. A simulation example of modeling flexible robot dynamics is provided to demonstrate the usefulness of the proposed technique.\",\"PeriodicalId\":219623,\"journal\":{\"name\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1995.525045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic recurrent neural networks for modeling flexible robot dynamics
The identification of a general class of multi-input and multi-output (MIMO) discrete-time nonlinear systems expressed in the state space form is studied using dynamic recurrent neural network (DRNN) approach. A novel discrete-time DRNN, which is represented by a set of parameterized nonlinear difference equations and has the universal approximation capability, is proposed for modeling unknown discrete-time nonlinear systems. Dynamic backpropagation learning algorithm is discussed extensively in order to carry out the modeling task using the input-output data. A simulation example of modeling flexible robot dynamics is provided to demonstrate the usefulness of the proposed technique.