通过面部表情来判断一个人的情绪状态

F. Prikler
{"title":"通过面部表情来判断一个人的情绪状态","authors":"F. Prikler","doi":"10.1109/MEMSTECH.2016.7507537","DOIUrl":null,"url":null,"abstract":"In this paper an overview about the methods and approaches used in the past to achieve facial expression recognition as well as an approach that involves the use of neural networks that proves to be very efficient are presented. The possibility to achieve up to 70% accuracy even without extraction of facial features is substantiated. Achievements related to the latest improvements in the field of robotic emotional intelligence are summarized.","PeriodicalId":102420,"journal":{"name":"2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of emotional state of a person based on facial expression\",\"authors\":\"F. Prikler\",\"doi\":\"10.1109/MEMSTECH.2016.7507537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an overview about the methods and approaches used in the past to achieve facial expression recognition as well as an approach that involves the use of neural networks that proves to be very efficient are presented. The possibility to achieve up to 70% accuracy even without extraction of facial features is substantiated. Achievements related to the latest improvements in the field of robotic emotional intelligence are summarized.\",\"PeriodicalId\":102420,\"journal\":{\"name\":\"2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSTECH.2016.7507537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSTECH.2016.7507537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文概述了过去用于面部表情识别的方法和方法,并介绍了一种使用神经网络的方法,该方法被证明是非常有效的。即使不提取面部特征,也有可能达到70%的准确率。综述了机器人情商领域的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of emotional state of a person based on facial expression
In this paper an overview about the methods and approaches used in the past to achieve facial expression recognition as well as an approach that involves the use of neural networks that proves to be very efficient are presented. The possibility to achieve up to 70% accuracy even without extraction of facial features is substantiated. Achievements related to the latest improvements in the field of robotic emotional intelligence are summarized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信