{"title":"δ -铁素体对奥氏体不锈钢焊缝金属敏化的影响","authors":"Y. Nakao, K. Nishimoto, M. Ishizaki","doi":"10.2207/QJJWS.9.415","DOIUrl":null,"url":null,"abstract":"Sensitization behavior of the delta-ferrite containing stainless steel weld metal was investigated using Type 304 and Type 308 alloys with the carbon content ranging from 0.04% to 0.09%, respective-ly. The weld metals heat treated at 923 K for times varying between 1 sec and 100 hr were tested for intergranular corrosion susceptibility in the acidified copper sulfate solution. The delta ferrite contain-ing weld metal with lower carbon content indicated rapidly healing of sensitization after the short heat treatment, whereas ones with higher carbon content than a critical value behaved as a fully austenitic steel regardless the existence of ferrite without showing the sign of rapid healing. SEM observation revealed that M23C6 precipitated preferentially at the ferrite-austenite boundary and also at the austenite-austenite boundaries although its amount at the latter boundaries was much less than the other in the both weld metals which indicated rapid healing of sensitization and behaved as a fully austenitic steel. A mathematical model is developed for the sensitization of the ferrite containing austenitic stainless steel weld metal. The degree of sensitization calculated using this model has shown a good agreement with the experimental corrosion test results. The calculation also demonstrated that for a given carbon content there exist the critical values for not only the total amount but the thickness of ferrite, above which the weld metal develop the rapid healing of sensitization.","PeriodicalId":273687,"journal":{"name":"Transactions of the Japan Welding Society","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Influence of Delta-ferrite on Sensitization of the Austenitic Stainless Steel Weld Metal\",\"authors\":\"Y. Nakao, K. Nishimoto, M. Ishizaki\",\"doi\":\"10.2207/QJJWS.9.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitization behavior of the delta-ferrite containing stainless steel weld metal was investigated using Type 304 and Type 308 alloys with the carbon content ranging from 0.04% to 0.09%, respective-ly. The weld metals heat treated at 923 K for times varying between 1 sec and 100 hr were tested for intergranular corrosion susceptibility in the acidified copper sulfate solution. The delta ferrite contain-ing weld metal with lower carbon content indicated rapidly healing of sensitization after the short heat treatment, whereas ones with higher carbon content than a critical value behaved as a fully austenitic steel regardless the existence of ferrite without showing the sign of rapid healing. SEM observation revealed that M23C6 precipitated preferentially at the ferrite-austenite boundary and also at the austenite-austenite boundaries although its amount at the latter boundaries was much less than the other in the both weld metals which indicated rapid healing of sensitization and behaved as a fully austenitic steel. A mathematical model is developed for the sensitization of the ferrite containing austenitic stainless steel weld metal. The degree of sensitization calculated using this model has shown a good agreement with the experimental corrosion test results. The calculation also demonstrated that for a given carbon content there exist the critical values for not only the total amount but the thickness of ferrite, above which the weld metal develop the rapid healing of sensitization.\",\"PeriodicalId\":273687,\"journal\":{\"name\":\"Transactions of the Japan Welding Society\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Japan Welding Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2207/QJJWS.9.415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Welding Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS.9.415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Delta-ferrite on Sensitization of the Austenitic Stainless Steel Weld Metal
Sensitization behavior of the delta-ferrite containing stainless steel weld metal was investigated using Type 304 and Type 308 alloys with the carbon content ranging from 0.04% to 0.09%, respective-ly. The weld metals heat treated at 923 K for times varying between 1 sec and 100 hr were tested for intergranular corrosion susceptibility in the acidified copper sulfate solution. The delta ferrite contain-ing weld metal with lower carbon content indicated rapidly healing of sensitization after the short heat treatment, whereas ones with higher carbon content than a critical value behaved as a fully austenitic steel regardless the existence of ferrite without showing the sign of rapid healing. SEM observation revealed that M23C6 precipitated preferentially at the ferrite-austenite boundary and also at the austenite-austenite boundaries although its amount at the latter boundaries was much less than the other in the both weld metals which indicated rapid healing of sensitization and behaved as a fully austenitic steel. A mathematical model is developed for the sensitization of the ferrite containing austenitic stainless steel weld metal. The degree of sensitization calculated using this model has shown a good agreement with the experimental corrosion test results. The calculation also demonstrated that for a given carbon content there exist the critical values for not only the total amount but the thickness of ferrite, above which the weld metal develop the rapid healing of sensitization.