欧氏旅行推销员问题的固定参数进化算法

Samadhi Nallaperuma, Andrew M. Sutton, F. Neumann
{"title":"欧氏旅行推销员问题的固定参数进化算法","authors":"Samadhi Nallaperuma, Andrew M. Sutton, F. Neumann","doi":"10.1109/CEC.2013.6557809","DOIUrl":null,"url":null,"abstract":"Recently, Sutton and Neumann [1] have studied evolutionary algorithms for the Euclidean traveling salesman problem by parameterized runtime analyses taking into account the number of inner points k and the number of cities n. They have shown that simple evolutionary algorithms are XP-algorithms for the problem, i.e., they obtain an optimal solution in expected time O(ng(k)) where g(k) is a function only depending on k. We extend these investigations and design two evolutionary algorithms for the Euclidean Traveling Salesperson problem that run in expected time g(k) · poly(n) where k is a parameter denoting the number inner points for the given TSP instance, i.e., they are fixed-parameter tractable evolutionary algorithms for the Euclidean TSP parameterized by the number of inner points. While our first approach is mainly of theoretical interest, our second approach leverages problem structure by directly searching for good orderings of the inner points and provides a novel and highly effective way of tackling this important problem. Our experimental results show that searching for a permutation on the inner points is a significantly powerful practical strategy.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fixed-parameter evolutionary algorithms for the Euclidean Traveling Salesperson problem\",\"authors\":\"Samadhi Nallaperuma, Andrew M. Sutton, F. Neumann\",\"doi\":\"10.1109/CEC.2013.6557809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Sutton and Neumann [1] have studied evolutionary algorithms for the Euclidean traveling salesman problem by parameterized runtime analyses taking into account the number of inner points k and the number of cities n. They have shown that simple evolutionary algorithms are XP-algorithms for the problem, i.e., they obtain an optimal solution in expected time O(ng(k)) where g(k) is a function only depending on k. We extend these investigations and design two evolutionary algorithms for the Euclidean Traveling Salesperson problem that run in expected time g(k) · poly(n) where k is a parameter denoting the number inner points for the given TSP instance, i.e., they are fixed-parameter tractable evolutionary algorithms for the Euclidean TSP parameterized by the number of inner points. While our first approach is mainly of theoretical interest, our second approach leverages problem structure by directly searching for good orderings of the inner points and provides a novel and highly effective way of tackling this important problem. Our experimental results show that searching for a permutation on the inner points is a significantly powerful practical strategy.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最近,Sutton和Neumann[1]通过参数化运行时分析研究了欧几里得旅行商问题的进化算法,考虑了内部点的个数k和城市的个数n。他们证明了简单的进化算法是求解该问题的xp算法,即:他们在期望时间O(ng(k))内获得最优解,其中g(k)是一个仅依赖于k的函数。我们扩展了这些研究并设计了两种针对欧几里得旅行推销员问题的进化算法,它们在期望时间g(k)·poly(n)中运行,其中k是表示给定TSP实例的内部点数量的参数,即它们是由内部点数量参数化的欧几里得TSP的固定参数可处理进化算法。虽然我们的第一种方法主要是理论上的,但我们的第二种方法通过直接搜索内部点的良好排序来利用问题结构,并提供了一种新颖而高效的方法来解决这一重要问题。我们的实验结果表明,寻找内部点的排列是一个非常强大的实用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-parameter evolutionary algorithms for the Euclidean Traveling Salesperson problem
Recently, Sutton and Neumann [1] have studied evolutionary algorithms for the Euclidean traveling salesman problem by parameterized runtime analyses taking into account the number of inner points k and the number of cities n. They have shown that simple evolutionary algorithms are XP-algorithms for the problem, i.e., they obtain an optimal solution in expected time O(ng(k)) where g(k) is a function only depending on k. We extend these investigations and design two evolutionary algorithms for the Euclidean Traveling Salesperson problem that run in expected time g(k) · poly(n) where k is a parameter denoting the number inner points for the given TSP instance, i.e., they are fixed-parameter tractable evolutionary algorithms for the Euclidean TSP parameterized by the number of inner points. While our first approach is mainly of theoretical interest, our second approach leverages problem structure by directly searching for good orderings of the inner points and provides a novel and highly effective way of tackling this important problem. Our experimental results show that searching for a permutation on the inner points is a significantly powerful practical strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信