{"title":"基于模型的连续数据共聚类","authors":"M. Nadif, G. Govaert","doi":"10.1109/ICMLA.2010.33","DOIUrl":null,"url":null,"abstract":"The co-clustering consists in reorganizing a data matrix into homogeneous blocks by considering simultaneously the sets of rows and columns. Setting this aim in model-based clustering, adapted block latent models were proposed for binary data and co-occurrence matrix. Regarding continuous data, the latent block model is not appropriated in many cases. As non-negative matrix factorization, it treats symmetrically the two sets, and the estimation of associated parameters requires a variational approximation. In this paper we focus on continuous data matrix without restriction to non negative matrix. We propose a parsimonious mixture model allowing to overcome the limits of the latent block model.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Model-Based Co-clustering for Continuous Data\",\"authors\":\"M. Nadif, G. Govaert\",\"doi\":\"10.1109/ICMLA.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The co-clustering consists in reorganizing a data matrix into homogeneous blocks by considering simultaneously the sets of rows and columns. Setting this aim in model-based clustering, adapted block latent models were proposed for binary data and co-occurrence matrix. Regarding continuous data, the latent block model is not appropriated in many cases. As non-negative matrix factorization, it treats symmetrically the two sets, and the estimation of associated parameters requires a variational approximation. In this paper we focus on continuous data matrix without restriction to non negative matrix. We propose a parsimonious mixture model allowing to overcome the limits of the latent block model.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The co-clustering consists in reorganizing a data matrix into homogeneous blocks by considering simultaneously the sets of rows and columns. Setting this aim in model-based clustering, adapted block latent models were proposed for binary data and co-occurrence matrix. Regarding continuous data, the latent block model is not appropriated in many cases. As non-negative matrix factorization, it treats symmetrically the two sets, and the estimation of associated parameters requires a variational approximation. In this paper we focus on continuous data matrix without restriction to non negative matrix. We propose a parsimonious mixture model allowing to overcome the limits of the latent block model.