云入侵检测系统的遗传-神经混合算法

Suresh Adithya Nallamuthu
{"title":"云入侵检测系统的遗传-神经混合算法","authors":"Suresh Adithya Nallamuthu","doi":"10.53409/mnaa.jcsit20201203","DOIUrl":null,"url":null,"abstract":"The security for cloud network systems is essential and significant to secure the data source from intruders and attacks. Implementing an intrusion detection system (IDS) for securing from those intruders and attacks is the best option. Many IDS models are presently based on different techniques and algorithms like machine learning and deep learning. In this research, IDS for the cloud computing environment is proposed. Here in this model, the genetic algorithm (GA) and back propagation neural network (BPNN) is used for attack detection and classification. The Canadian Institute for Cyber-security CIC-IDS 2017 dataset is used for the evaluation of performance analysis. Initially, from the dataset, the data are preprocessed, and by using the genetic algorithm, the attack was detected. The detected attacks are classified using the BPNN classifier for identifying the types of attacks. The performance analysis was executed, and the results are obtained and compared with the existing machine learning-based classifiers like FC-ANN, NB-RF, KDBN, and FCM-SVM techniques. The proposed GA-BPNN model outperforms all these classifying techniques in every performance metric, like accuracy, precision, recall, and detection rate. Overall, from the performance analysis, the best classification accuracy is achieved for Web attack detection with 97.90%, and the best detection rate is achieved for Brute force attack detection with 97.89%.","PeriodicalId":125707,"journal":{"name":"Journal of Computational Science and Intelligent Technologies","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hybrid Genetic-Neuro Algorithm for Cloud Intrusion Detection System\",\"authors\":\"Suresh Adithya Nallamuthu\",\"doi\":\"10.53409/mnaa.jcsit20201203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The security for cloud network systems is essential and significant to secure the data source from intruders and attacks. Implementing an intrusion detection system (IDS) for securing from those intruders and attacks is the best option. Many IDS models are presently based on different techniques and algorithms like machine learning and deep learning. In this research, IDS for the cloud computing environment is proposed. Here in this model, the genetic algorithm (GA) and back propagation neural network (BPNN) is used for attack detection and classification. The Canadian Institute for Cyber-security CIC-IDS 2017 dataset is used for the evaluation of performance analysis. Initially, from the dataset, the data are preprocessed, and by using the genetic algorithm, the attack was detected. The detected attacks are classified using the BPNN classifier for identifying the types of attacks. The performance analysis was executed, and the results are obtained and compared with the existing machine learning-based classifiers like FC-ANN, NB-RF, KDBN, and FCM-SVM techniques. The proposed GA-BPNN model outperforms all these classifying techniques in every performance metric, like accuracy, precision, recall, and detection rate. Overall, from the performance analysis, the best classification accuracy is achieved for Web attack detection with 97.90%, and the best detection rate is achieved for Brute force attack detection with 97.89%.\",\"PeriodicalId\":125707,\"journal\":{\"name\":\"Journal of Computational Science and Intelligent Technologies\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Intelligent Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53409/mnaa.jcsit20201203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Intelligent Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53409/mnaa.jcsit20201203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

云网络系统的安全性对于保护数据源免受入侵和攻击至关重要。实现入侵检测系统(IDS)以防止这些入侵者和攻击是最好的选择。目前,许多IDS模型基于不同的技术和算法,如机器学习和深度学习。本研究提出了针对云计算环境的入侵检测系统。在此模型中,使用遗传算法(GA)和反向传播神经网络(BPNN)进行攻击检测和分类。使用加拿大网络安全研究所CIC-IDS 2017数据集进行绩效评估分析。首先,从数据集中对数据进行预处理,利用遗传算法检测攻击。检测到的攻击使用BPNN分类器进行分类,用于识别攻击类型。进行了性能分析,并将结果与现有的基于机器学习的分类器(如FC-ANN、NB-RF、KDBN和FCM-SVM技术)进行了比较。提出的GA-BPNN模型在每个性能指标上都优于所有这些分类技术,如准确率、精度、召回率和检测率。总的来说,从性能分析来看,Web攻击检测的分类准确率达到了97.90%,Brute force攻击检测的检测率达到了97.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Genetic-Neuro Algorithm for Cloud Intrusion Detection System
The security for cloud network systems is essential and significant to secure the data source from intruders and attacks. Implementing an intrusion detection system (IDS) for securing from those intruders and attacks is the best option. Many IDS models are presently based on different techniques and algorithms like machine learning and deep learning. In this research, IDS for the cloud computing environment is proposed. Here in this model, the genetic algorithm (GA) and back propagation neural network (BPNN) is used for attack detection and classification. The Canadian Institute for Cyber-security CIC-IDS 2017 dataset is used for the evaluation of performance analysis. Initially, from the dataset, the data are preprocessed, and by using the genetic algorithm, the attack was detected. The detected attacks are classified using the BPNN classifier for identifying the types of attacks. The performance analysis was executed, and the results are obtained and compared with the existing machine learning-based classifiers like FC-ANN, NB-RF, KDBN, and FCM-SVM techniques. The proposed GA-BPNN model outperforms all these classifying techniques in every performance metric, like accuracy, precision, recall, and detection rate. Overall, from the performance analysis, the best classification accuracy is achieved for Web attack detection with 97.90%, and the best detection rate is achieved for Brute force attack detection with 97.89%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信