用遗传算法组合和适应软件质量预测模型

D. Azar, Doina Precup, S. Bouktif, B. Kégl, H. Sahraoui
{"title":"用遗传算法组合和适应软件质量预测模型","authors":"D. Azar, Doina Precup, S. Bouktif, B. Kégl, H. Sahraoui","doi":"10.1109/ASE.2002.1115031","DOIUrl":null,"url":null,"abstract":"The goal of quality models is to predict a quality factor starting from a set of direct measures. Selecting an appropriate quality model for a particular software is a difficult, non-trivial decision. In this paper, we propose an approach to combine and/or adapt existing models (experts) in such way that the combined/adapted model works well on the particular system. Test results indicate that the models perform significantly better than individual experts in the pool.","PeriodicalId":163532,"journal":{"name":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Combining and adapting software quality predictive models by genetic algorithms\",\"authors\":\"D. Azar, Doina Precup, S. Bouktif, B. Kégl, H. Sahraoui\",\"doi\":\"10.1109/ASE.2002.1115031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of quality models is to predict a quality factor starting from a set of direct measures. Selecting an appropriate quality model for a particular software is a difficult, non-trivial decision. In this paper, we propose an approach to combine and/or adapt existing models (experts) in such way that the combined/adapted model works well on the particular system. Test results indicate that the models perform significantly better than individual experts in the pool.\",\"PeriodicalId\":163532,\"journal\":{\"name\":\"Proceedings 17th IEEE International Conference on Automated Software Engineering,\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th IEEE International Conference on Automated Software Engineering,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2002.1115031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2002.1115031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

质量模型的目标是从一组直接度量开始预测质量因素。为一个特定的软件选择一个合适的质量模型是一个困难的、重要的决定。在本文中,我们提出了一种组合和/或调整现有模型(专家)的方法,使组合/调整的模型在特定系统上工作得很好。测试结果表明,模型的表现明显优于单个专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining and adapting software quality predictive models by genetic algorithms
The goal of quality models is to predict a quality factor starting from a set of direct measures. Selecting an appropriate quality model for a particular software is a difficult, non-trivial decision. In this paper, we propose an approach to combine and/or adapt existing models (experts) in such way that the combined/adapted model works well on the particular system. Test results indicate that the models perform significantly better than individual experts in the pool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信