{"title":"基于机器学习的短期居民用电预测对智能电表网络攻击的脆弱性评估","authors":"Alanoud Alrasheedi, Osarodion Emmanuel Egbomwan, Shichao Liu, Nowayer Alrashidi","doi":"10.1109/SmartGridComm52983.2022.9961008","DOIUrl":null,"url":null,"abstract":"Short-Term Load Forecast at residential house level plays a critical role in home energy management system. While a variety of machine learning based load forecasting methods have been proposed, their prediction performance have not been assessed against cyber threats on smart meters which have been increasingly reported. This paper investigates the vulnerability of four extensively used machine learning algorithms for residential short-term load forecast against cyberattacks, including Nonlinear Auto Regression with external input (NARX) neural network, support vector machine (SVM), decision tree (DT), and long-short-term memory (LSTM) deep learning. We use the REFIT dataset which collected whole-house aggregated loads at 8-second intervals continuously from 20 houses over a two-year period in the U.K. The results were determined and show the predictions using NARX and LSTM. Four cyberattack models are investigated, including pulse, scale, ramp, and random. The vulnerability assessment results indicate the LSTM provides the most accurate prediction without cyberattacks. However, the prediction accuracy of the LSTM fluctuates when there are cyber-attacks. Among the four cyberattacks, the random attack triggered the larges variations on the predication results.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vulnerability Assessment of Machine Learning Based Short-Term Residential Load Forecast against Cyber Attacks on Smart Meters\",\"authors\":\"Alanoud Alrasheedi, Osarodion Emmanuel Egbomwan, Shichao Liu, Nowayer Alrashidi\",\"doi\":\"10.1109/SmartGridComm52983.2022.9961008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-Term Load Forecast at residential house level plays a critical role in home energy management system. While a variety of machine learning based load forecasting methods have been proposed, their prediction performance have not been assessed against cyber threats on smart meters which have been increasingly reported. This paper investigates the vulnerability of four extensively used machine learning algorithms for residential short-term load forecast against cyberattacks, including Nonlinear Auto Regression with external input (NARX) neural network, support vector machine (SVM), decision tree (DT), and long-short-term memory (LSTM) deep learning. We use the REFIT dataset which collected whole-house aggregated loads at 8-second intervals continuously from 20 houses over a two-year period in the U.K. The results were determined and show the predictions using NARX and LSTM. Four cyberattack models are investigated, including pulse, scale, ramp, and random. The vulnerability assessment results indicate the LSTM provides the most accurate prediction without cyberattacks. However, the prediction accuracy of the LSTM fluctuates when there are cyber-attacks. Among the four cyberattacks, the random attack triggered the larges variations on the predication results.\",\"PeriodicalId\":252202,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm52983.2022.9961008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9961008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vulnerability Assessment of Machine Learning Based Short-Term Residential Load Forecast against Cyber Attacks on Smart Meters
Short-Term Load Forecast at residential house level plays a critical role in home energy management system. While a variety of machine learning based load forecasting methods have been proposed, their prediction performance have not been assessed against cyber threats on smart meters which have been increasingly reported. This paper investigates the vulnerability of four extensively used machine learning algorithms for residential short-term load forecast against cyberattacks, including Nonlinear Auto Regression with external input (NARX) neural network, support vector machine (SVM), decision tree (DT), and long-short-term memory (LSTM) deep learning. We use the REFIT dataset which collected whole-house aggregated loads at 8-second intervals continuously from 20 houses over a two-year period in the U.K. The results were determined and show the predictions using NARX and LSTM. Four cyberattack models are investigated, including pulse, scale, ramp, and random. The vulnerability assessment results indicate the LSTM provides the most accurate prediction without cyberattacks. However, the prediction accuracy of the LSTM fluctuates when there are cyber-attacks. Among the four cyberattacks, the random attack triggered the larges variations on the predication results.