Øyvind H. Myklatun, Thorstein K. Thorrud, H. Nguyen, H. Langseth, Anders Kofod-Petersen
{"title":"基于概率的稀疏会话数据预测电子商务消费者行为方法","authors":"Øyvind H. Myklatun, Thorstein K. Thorrud, H. Nguyen, H. Langseth, Anders Kofod-Petersen","doi":"10.1145/2813448.2813514","DOIUrl":null,"url":null,"abstract":"This paper describes some of the key properties of the proposed solution for the RecSys 2015 Challenge from the team Tøyvind thørrud. Three contributions will be highlighted: i) Feature extraction, ii) Classifier design, and iii) Decision rules to optimize the prediction results towards the RecSys Challenge's score. We finished sixth out of more than 250 active teams in the competition.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data\",\"authors\":\"Øyvind H. Myklatun, Thorstein K. Thorrud, H. Nguyen, H. Langseth, Anders Kofod-Petersen\",\"doi\":\"10.1145/2813448.2813514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes some of the key properties of the proposed solution for the RecSys 2015 Challenge from the team Tøyvind thørrud. Three contributions will be highlighted: i) Feature extraction, ii) Classifier design, and iii) Decision rules to optimize the prediction results towards the RecSys Challenge's score. We finished sixth out of more than 250 active teams in the competition.\",\"PeriodicalId\":324873,\"journal\":{\"name\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813448.2813514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data
This paper describes some of the key properties of the proposed solution for the RecSys 2015 Challenge from the team Tøyvind thørrud. Three contributions will be highlighted: i) Feature extraction, ii) Classifier design, and iii) Decision rules to optimize the prediction results towards the RecSys Challenge's score. We finished sixth out of more than 250 active teams in the competition.