应用鲁棒融合分割算法的跨传感器虹膜验证

E. G. Llano, J. Colores-Vargas, M. García-Vázquez, L. M. Zamudio-Fuentes, A. A. Ramírez-Acosta
{"title":"应用鲁棒融合分割算法的跨传感器虹膜验证","authors":"E. G. Llano, J. Colores-Vargas, M. García-Vázquez, L. M. Zamudio-Fuentes, A. A. Ramírez-Acosta","doi":"10.1109/ICB.2015.7139042","DOIUrl":null,"url":null,"abstract":"Currently, identity management systems work with heterogeneous iris images captured by different types of iris sensors. Indeed, iris recognition is being widely used in different environments where the identity of a person is necessary. Therefore, it is a challenging problem to maintain a stable iris recognition system which is effective for all type of iris sensors. This paper proposes a new cross-sensor iris recognition scheme that increases the recognition accuracy. The novelty of this work is the new strategy in applying robust fusion methods at level of segmentation stage for cross-sensor iris recognition. The experiments with the Casia-V3-Interval, Casia-V4-Thousand, Ubiris-V1 and MBGC-V2 databases show that our scheme increases the recognition accuracy and it is robust to different types of iris sensors while the user interaction is reduced.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Cross-sensor iris verification applying robust fused segmentation algorithms\",\"authors\":\"E. G. Llano, J. Colores-Vargas, M. García-Vázquez, L. M. Zamudio-Fuentes, A. A. Ramírez-Acosta\",\"doi\":\"10.1109/ICB.2015.7139042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, identity management systems work with heterogeneous iris images captured by different types of iris sensors. Indeed, iris recognition is being widely used in different environments where the identity of a person is necessary. Therefore, it is a challenging problem to maintain a stable iris recognition system which is effective for all type of iris sensors. This paper proposes a new cross-sensor iris recognition scheme that increases the recognition accuracy. The novelty of this work is the new strategy in applying robust fusion methods at level of segmentation stage for cross-sensor iris recognition. The experiments with the Casia-V3-Interval, Casia-V4-Thousand, Ubiris-V1 and MBGC-V2 databases show that our scheme increases the recognition accuracy and it is robust to different types of iris sensors while the user interaction is reduced.\",\"PeriodicalId\":237372,\"journal\":{\"name\":\"2015 International Conference on Biometrics (ICB)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2015.7139042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

目前,身份管理系统可以处理由不同类型的虹膜传感器捕获的异构虹膜图像。事实上,虹膜识别正在被广泛应用于不同的环境中,在这些环境中需要一个人的身份。因此,如何保持一个稳定的、对所有类型的虹膜传感器都有效的虹膜识别系统是一个具有挑战性的问题。本文提出了一种新的跨传感器虹膜识别方案,提高了识别精度。本文的新颖之处在于将鲁棒融合方法应用于跨传感器虹膜识别的分割阶段。在Casia-V3-Interval、Casia-V4-Thousand、Ubiris-V1和MBGC-V2数据库上的实验表明,该方法在降低用户交互的同时,提高了识别精度,对不同类型虹膜传感器具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-sensor iris verification applying robust fused segmentation algorithms
Currently, identity management systems work with heterogeneous iris images captured by different types of iris sensors. Indeed, iris recognition is being widely used in different environments where the identity of a person is necessary. Therefore, it is a challenging problem to maintain a stable iris recognition system which is effective for all type of iris sensors. This paper proposes a new cross-sensor iris recognition scheme that increases the recognition accuracy. The novelty of this work is the new strategy in applying robust fusion methods at level of segmentation stage for cross-sensor iris recognition. The experiments with the Casia-V3-Interval, Casia-V4-Thousand, Ubiris-V1 and MBGC-V2 databases show that our scheme increases the recognition accuracy and it is robust to different types of iris sensors while the user interaction is reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信