自动语音识别孟加拉数字

G. Muhammad, Y. Alotaibi, M. N. Huda
{"title":"自动语音识别孟加拉数字","authors":"G. Muhammad, Y. Alotaibi, M. N. Huda","doi":"10.1109/ICCIT.2009.5407267","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a system for Bangla digit automatic speech recognition (ASR). Though Bangla is one of the largely spoken languages in the world, only a few works on Bangla ASR can be found in the literature, especially on Bangladeshi accented Bangla. In this work, the corpus is collected from natives in Bangladesh. Mel-frequency cepstral coefficients (MFCCs) based features and hidden Markov model (HMM) based classifiers are used for recognition. Experimental results show comparatively high recognition performance (more than 95%) for first six digits (0 – 5) and low performance (less than 90%) for the next four digits (6 – 9). We notice two confused pairs of digits: one with (6) and (9), and the other with (7) and (8), in the experiments. We also find that different dialects in Bangladesh have a greater role on this confusion.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Automatic speech recognition for Bangla digits\",\"authors\":\"G. Muhammad, Y. Alotaibi, M. N. Huda\",\"doi\":\"10.1109/ICCIT.2009.5407267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a system for Bangla digit automatic speech recognition (ASR). Though Bangla is one of the largely spoken languages in the world, only a few works on Bangla ASR can be found in the literature, especially on Bangladeshi accented Bangla. In this work, the corpus is collected from natives in Bangladesh. Mel-frequency cepstral coefficients (MFCCs) based features and hidden Markov model (HMM) based classifiers are used for recognition. Experimental results show comparatively high recognition performance (more than 95%) for first six digits (0 – 5) and low performance (less than 90%) for the next four digits (6 – 9). We notice two confused pairs of digits: one with (6) and (9), and the other with (7) and (8), in the experiments. We also find that different dialects in Bangladesh have a greater role on this confusion.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

本文介绍了一种孟加拉语数字自动语音识别系统。虽然孟加拉语是世界上主要使用的语言之一,但在文献中,关于孟加拉语ASR的作品很少,特别是关于孟加拉口音的孟加拉语。在这项工作中,语料库是从孟加拉国当地人收集的。基于mel频率倒谱系数(MFCCs)的特征和基于隐马尔可夫模型(HMM)的分类器进行识别。实验结果表明,对前六位数字(0 - 5)的识别性能相对较高(超过95%),而对后四位数字(6 - 9)的识别性能较低(低于90%)。在实验中,我们注意到两对数字混淆:一对是(6)和(9),另一对是(7)和(8)。我们还发现,孟加拉国的不同方言对这种混淆起着更大的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic speech recognition for Bangla digits
In this paper, we introduce a system for Bangla digit automatic speech recognition (ASR). Though Bangla is one of the largely spoken languages in the world, only a few works on Bangla ASR can be found in the literature, especially on Bangladeshi accented Bangla. In this work, the corpus is collected from natives in Bangladesh. Mel-frequency cepstral coefficients (MFCCs) based features and hidden Markov model (HMM) based classifiers are used for recognition. Experimental results show comparatively high recognition performance (more than 95%) for first six digits (0 – 5) and low performance (less than 90%) for the next four digits (6 – 9). We notice two confused pairs of digits: one with (6) and (9), and the other with (7) and (8), in the experiments. We also find that different dialects in Bangladesh have a greater role on this confusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信