利用区域理论对Petri网控制器进行代数和几何表征

A. Ghaffari, N. Rezg, Xiaolan Xie
{"title":"利用区域理论对Petri网控制器进行代数和几何表征","authors":"A. Ghaffari, N. Rezg, Xiaolan Xie","doi":"10.1109/WODES.2002.1167691","DOIUrl":null,"url":null,"abstract":"This paper presents a formal treatment of Petri net controller design problems. Two supervisory control problems of plant Petri net models, forbidden state and forbidden state-transition problems, are defined. The theory of regions is used to provide algebraic characterizations of pure and impure control places for both problems. Thanks to Farkas-Minkowski's lemma, the algebraic characterizations lead to nice geometric characterization for the existence of control places for the two supervisory problems.","PeriodicalId":435263,"journal":{"name":"Sixth International Workshop on Discrete Event Systems, 2002. Proceedings.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Algebraic and geometric characterization of Petri net controllers using the theory of regions\",\"authors\":\"A. Ghaffari, N. Rezg, Xiaolan Xie\",\"doi\":\"10.1109/WODES.2002.1167691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a formal treatment of Petri net controller design problems. Two supervisory control problems of plant Petri net models, forbidden state and forbidden state-transition problems, are defined. The theory of regions is used to provide algebraic characterizations of pure and impure control places for both problems. Thanks to Farkas-Minkowski's lemma, the algebraic characterizations lead to nice geometric characterization for the existence of control places for the two supervisory problems.\",\"PeriodicalId\":435263,\"journal\":{\"name\":\"Sixth International Workshop on Discrete Event Systems, 2002. Proceedings.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Workshop on Discrete Event Systems, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2002.1167691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Workshop on Discrete Event Systems, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2002.1167691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文给出了Petri网控制器设计问题的形式化处理方法。定义了植物Petri网模型的两个监督控制问题:禁止状态问题和禁止状态转移问题。利用区域理论给出了这两个问题的纯控制点和非纯控制点的代数表征。借助于法卡斯-闵可夫斯基引理,代数表征得到了两个监督问题控制点存在的良好几何表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic and geometric characterization of Petri net controllers using the theory of regions
This paper presents a formal treatment of Petri net controller design problems. Two supervisory control problems of plant Petri net models, forbidden state and forbidden state-transition problems, are defined. The theory of regions is used to provide algebraic characterizations of pure and impure control places for both problems. Thanks to Farkas-Minkowski's lemma, the algebraic characterizations lead to nice geometric characterization for the existence of control places for the two supervisory problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信