异常点附近递归除法曲面的行为

D. Doo, M. Sabin
{"title":"异常点附近递归除法曲面的行为","authors":"D. Doo, M. Sabin","doi":"10.1145/280811.280991","DOIUrl":null,"url":null,"abstract":"The behaviour of the limit surface defined by a recursive division construction can be analysed in terms of the eigenvalues of a set of matrices. This analysis predicts effects actually observed, and leads to suggestions for the further improvement of the method.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1146","resultStr":"{\"title\":\"Behaviour of recursive division surfaces near extraordinary points\",\"authors\":\"D. Doo, M. Sabin\",\"doi\":\"10.1145/280811.280991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behaviour of the limit surface defined by a recursive division construction can be analysed in terms of the eigenvalues of a set of matrices. This analysis predicts effects actually observed, and leads to suggestions for the further improvement of the method.\",\"PeriodicalId\":236803,\"journal\":{\"name\":\"Seminal graphics: pioneering efforts that shaped the field\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1146\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminal graphics: pioneering efforts that shaped the field\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/280811.280991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminal graphics: pioneering efforts that shaped the field","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/280811.280991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1146

摘要

用递归除法构造定义的极限曲面的性质可以用一组矩阵的特征值来分析。该分析预测了实际观察到的效果,并对该方法的进一步改进提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behaviour of recursive division surfaces near extraordinary points
The behaviour of the limit surface defined by a recursive division construction can be analysed in terms of the eigenvalues of a set of matrices. This analysis predicts effects actually observed, and leads to suggestions for the further improvement of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信