压缩感知图像编码的通用低复杂度量化器设计

Xiangwei Li, Xuguang Lan, Meng Yang, Jianru Xue, Nanning Zheng
{"title":"压缩感知图像编码的通用低复杂度量化器设计","authors":"Xiangwei Li, Xuguang Lan, Meng Yang, Jianru Xue, Nanning Zheng","doi":"10.1109/VCIP.2013.6706403","DOIUrl":null,"url":null,"abstract":"Compressive sensing imaging (CSI) is a new framework for image coding, which enables acquiring and compressing a scene simultaneously. The CS encoder shifts the bulk of the system complexity to the decoder efficiently. Ideally, implementation of CSI provides lossless compression in image coding. In this paper, we consider the lossy compression of the CS measurements in CSI system. We design a universal quantizer for the CS measurements of any input image. The proposed method firstly establishes a universal probability model for the CS measurements in advance, without knowing any information of the input image. Then a fast quantizer is designed based on this established model. Simulation result demonstrates that the proposed method has nearly optimal rate-distortion (R~D) performance, meanwhile, maintains a very low computational complexity at the CS encoder.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Universal and low-complexity quantizer design for compressive sensing image coding\",\"authors\":\"Xiangwei Li, Xuguang Lan, Meng Yang, Jianru Xue, Nanning Zheng\",\"doi\":\"10.1109/VCIP.2013.6706403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing imaging (CSI) is a new framework for image coding, which enables acquiring and compressing a scene simultaneously. The CS encoder shifts the bulk of the system complexity to the decoder efficiently. Ideally, implementation of CSI provides lossless compression in image coding. In this paper, we consider the lossy compression of the CS measurements in CSI system. We design a universal quantizer for the CS measurements of any input image. The proposed method firstly establishes a universal probability model for the CS measurements in advance, without knowing any information of the input image. Then a fast quantizer is designed based on this established model. Simulation result demonstrates that the proposed method has nearly optimal rate-distortion (R~D) performance, meanwhile, maintains a very low computational complexity at the CS encoder.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

压缩感知成像(CSI)是一种新的图像编码框架,它可以同时获取和压缩场景。CS编码器有效地将大部分系统复杂性转移到解码器上。理想情况下,CSI的实现在图像编码中提供无损压缩。本文研究了CSI系统中CS测量值的有损压缩问题。我们设计了一个通用量化器,用于任何输入图像的CS测量。该方法在不知道输入图像的任何信息的情况下,预先建立了CS测量的通用概率模型。在此基础上设计了快速量化器。仿真结果表明,该方法具有接近最优的率失真(R~D)性能,同时在CS编码器上保持了极低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal and low-complexity quantizer design for compressive sensing image coding
Compressive sensing imaging (CSI) is a new framework for image coding, which enables acquiring and compressing a scene simultaneously. The CS encoder shifts the bulk of the system complexity to the decoder efficiently. Ideally, implementation of CSI provides lossless compression in image coding. In this paper, we consider the lossy compression of the CS measurements in CSI system. We design a universal quantizer for the CS measurements of any input image. The proposed method firstly establishes a universal probability model for the CS measurements in advance, without knowing any information of the input image. Then a fast quantizer is designed based on this established model. Simulation result demonstrates that the proposed method has nearly optimal rate-distortion (R~D) performance, meanwhile, maintains a very low computational complexity at the CS encoder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信