基于机器学习的异质区域碳单元计算方法的开发

I. Vasendina, K. Shoshina, V. Berezovsky, R. Aleshko, R. Vorontsov, T. Desyatova
{"title":"基于机器学习的异质区域碳单元计算方法的开发","authors":"I. Vasendina, K. Shoshina, V. Berezovsky, R. Aleshko, R. Vorontsov, T. Desyatova","doi":"10.1109/ITNT57377.2023.10139264","DOIUrl":null,"url":null,"abstract":"The paper describes a method for calculating carbon units of heterogeneous territories based on machine learning. The hierarchical structure of areal territories and the structure of the interconnection of multi-scale images are described. An approach is given to identify and classify terrain objects in order to more accurately calculate the carbon reserve of the territory.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a methodology for calculating carbon units of heterogeneous territories based on machine learning\",\"authors\":\"I. Vasendina, K. Shoshina, V. Berezovsky, R. Aleshko, R. Vorontsov, T. Desyatova\",\"doi\":\"10.1109/ITNT57377.2023.10139264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a method for calculating carbon units of heterogeneous territories based on machine learning. The hierarchical structure of areal territories and the structure of the interconnection of multi-scale images are described. An approach is given to identify and classify terrain objects in order to more accurately calculate the carbon reserve of the territory.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种基于机器学习的异构区域碳单元计算方法。描述了区域的层次结构和多尺度图像的互联结构。为了更准确地计算土地碳储量,提出了一种地物识别和分类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a methodology for calculating carbon units of heterogeneous territories based on machine learning
The paper describes a method for calculating carbon units of heterogeneous territories based on machine learning. The hierarchical structure of areal territories and the structure of the interconnection of multi-scale images are described. An approach is given to identify and classify terrain objects in order to more accurately calculate the carbon reserve of the territory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信