{"title":"微型机器人应用草履虫顺流动力学模型","authors":"N. Ogawa, H. Oku, K. Hashimoto, M. Ishikawa","doi":"10.1109/ROBOT.2005.1570286","DOIUrl":null,"url":null,"abstract":"We propose a dynamics model of galvanotaxis (locomotor response to electrical stimulus) of the protozoan Paramecium. Our purpose is to utilize microorganisms as micro-robots by using galvanotaxis. For precise and advanced actuation, it is necessary to describe the dynamics of galvanotaxis in a mathematical and quantitative manner in the framework of robotics. However, until now the explanation of Paramecium galvanotaxis in previous works has remained only qualitative. In this paper, we construct a novel model of galvanotaxis as a minimal step to utilizing Paramecium cells as micro-robots. Numerical experiments for our model demonstrate realistic behaviors, such as U-turn motions, like those of real cells.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Dynamics Model of Paramecium Galvanotaxis for Microrobotic Application\",\"authors\":\"N. Ogawa, H. Oku, K. Hashimoto, M. Ishikawa\",\"doi\":\"10.1109/ROBOT.2005.1570286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a dynamics model of galvanotaxis (locomotor response to electrical stimulus) of the protozoan Paramecium. Our purpose is to utilize microorganisms as micro-robots by using galvanotaxis. For precise and advanced actuation, it is necessary to describe the dynamics of galvanotaxis in a mathematical and quantitative manner in the framework of robotics. However, until now the explanation of Paramecium galvanotaxis in previous works has remained only qualitative. In this paper, we construct a novel model of galvanotaxis as a minimal step to utilizing Paramecium cells as micro-robots. Numerical experiments for our model demonstrate realistic behaviors, such as U-turn motions, like those of real cells.\",\"PeriodicalId\":350878,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2005.1570286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamics Model of Paramecium Galvanotaxis for Microrobotic Application
We propose a dynamics model of galvanotaxis (locomotor response to electrical stimulus) of the protozoan Paramecium. Our purpose is to utilize microorganisms as micro-robots by using galvanotaxis. For precise and advanced actuation, it is necessary to describe the dynamics of galvanotaxis in a mathematical and quantitative manner in the framework of robotics. However, until now the explanation of Paramecium galvanotaxis in previous works has remained only qualitative. In this paper, we construct a novel model of galvanotaxis as a minimal step to utilizing Paramecium cells as micro-robots. Numerical experiments for our model demonstrate realistic behaviors, such as U-turn motions, like those of real cells.