使用最先进技术的手写数字识别

Cheng-Lin Liu, Kazuki Nakashima, H. Sako, H. Fujisawa
{"title":"使用最先进技术的手写数字识别","authors":"Cheng-Lin Liu, Kazuki Nakashima, H. Sako, H. Fujisawa","doi":"10.1109/IWFHR.2002.1030930","DOIUrl":null,"url":null,"abstract":"This paper presents the latest results of handwritten digit recognition on well-known image databases using the state-of-the-art feature extraction and classification techniques. The tested databases are CENPARMI, CEDAR, and MNIST. On the test dataset of each database, 56 recognition accuracies are given by combining 7 classifiers with 8 feature vectors. All the classifiers and feature vectors give high accuracies. Among the features, the chain-code feature and gradient feature show advantages, and the profile structure feature shows efficiency as a complementary feature. In comparison of classifiers, the support vector classifier with RBF kernel gives the highest accuracy but is extremely expensive in storage and computation. Among the non-SV classifiers, the polynomial classifier performs best, followed by a learning quadratic discriminant function classifier. The results are competitive compared to previous ones and they provide a baseline for evaluation of future works.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Handwritten digit recognition using state-of-the-art techniques\",\"authors\":\"Cheng-Lin Liu, Kazuki Nakashima, H. Sako, H. Fujisawa\",\"doi\":\"10.1109/IWFHR.2002.1030930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the latest results of handwritten digit recognition on well-known image databases using the state-of-the-art feature extraction and classification techniques. The tested databases are CENPARMI, CEDAR, and MNIST. On the test dataset of each database, 56 recognition accuracies are given by combining 7 classifiers with 8 feature vectors. All the classifiers and feature vectors give high accuracies. Among the features, the chain-code feature and gradient feature show advantages, and the profile structure feature shows efficiency as a complementary feature. In comparison of classifiers, the support vector classifier with RBF kernel gives the highest accuracy but is extremely expensive in storage and computation. Among the non-SV classifiers, the polynomial classifier performs best, followed by a learning quadratic discriminant function classifier. The results are competitive compared to previous ones and they provide a baseline for evaluation of future works.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

本文介绍了利用最先进的特征提取和分类技术在知名图像数据库上进行手写体数字识别的最新成果。测试的数据库是CENPARMI、CEDAR和MNIST。在每个数据库的测试数据集上,将7个分类器与8个特征向量组合,得到56个识别准确率。所有分类器和特征向量都具有较高的准确率。其中,链码特征和梯度特征表现出优势,轮廓结构特征作为互补特征表现出效率。在分类器的比较中,带RBF核的支持向量分类器精度最高,但存储和计算成本极高。在非sv分类器中,多项式分类器性能最好,其次是学习二次判别函数分类器。与以前的结果相比,这些结果具有竞争力,并为评估未来的工作提供了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten digit recognition using state-of-the-art techniques
This paper presents the latest results of handwritten digit recognition on well-known image databases using the state-of-the-art feature extraction and classification techniques. The tested databases are CENPARMI, CEDAR, and MNIST. On the test dataset of each database, 56 recognition accuracies are given by combining 7 classifiers with 8 feature vectors. All the classifiers and feature vectors give high accuracies. Among the features, the chain-code feature and gradient feature show advantages, and the profile structure feature shows efficiency as a complementary feature. In comparison of classifiers, the support vector classifier with RBF kernel gives the highest accuracy but is extremely expensive in storage and computation. Among the non-SV classifiers, the polynomial classifier performs best, followed by a learning quadratic discriminant function classifier. The results are competitive compared to previous ones and they provide a baseline for evaluation of future works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信