基于自适应时空注意力的视频字幕

Zohreh Ghaderi, Leonard Salewski, H. Lensch
{"title":"基于自适应时空注意力的视频字幕","authors":"Zohreh Ghaderi, Leonard Salewski, H. Lensch","doi":"10.48550/arXiv.2208.09266","DOIUrl":null,"url":null,"abstract":"To generate proper captions for videos, the inference needs to identify relevant concepts and pay attention to the spatial relationships between them as well as to the temporal development in the clip. Our end-to-end encoder-decoder video captioning framework incorporates two transformer-based architectures, an adapted transformer for a single joint spatio-temporal video analysis as well as a self-attention-based decoder for advanced text generation. Furthermore, we introduce an adaptive frame selection scheme to reduce the number of required incoming frames while maintaining the relevant content when training both transformers. Additionally, we estimate semantic concepts relevant for video captioning by aggregating all ground truth captions of each sample. Our approach achieves state-of-the-art results on the MSVD, as well as on the large-scale MSR-VTT and the VATEX benchmark datasets considering multiple Natural Language Generation (NLG) metrics. Additional evaluations on diversity scores highlight the expressiveness and diversity in the structure of our generated captions.","PeriodicalId":221267,"journal":{"name":"German Conference on Pattern Recognition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diverse Video Captioning by Adaptive Spatio-temporal Attention\",\"authors\":\"Zohreh Ghaderi, Leonard Salewski, H. Lensch\",\"doi\":\"10.48550/arXiv.2208.09266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To generate proper captions for videos, the inference needs to identify relevant concepts and pay attention to the spatial relationships between them as well as to the temporal development in the clip. Our end-to-end encoder-decoder video captioning framework incorporates two transformer-based architectures, an adapted transformer for a single joint spatio-temporal video analysis as well as a self-attention-based decoder for advanced text generation. Furthermore, we introduce an adaptive frame selection scheme to reduce the number of required incoming frames while maintaining the relevant content when training both transformers. Additionally, we estimate semantic concepts relevant for video captioning by aggregating all ground truth captions of each sample. Our approach achieves state-of-the-art results on the MSVD, as well as on the large-scale MSR-VTT and the VATEX benchmark datasets considering multiple Natural Language Generation (NLG) metrics. Additional evaluations on diversity scores highlight the expressiveness and diversity in the structure of our generated captions.\",\"PeriodicalId\":221267,\"journal\":{\"name\":\"German Conference on Pattern Recognition\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"German Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.09266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"German Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了为视频生成合适的字幕,推理需要识别相关概念,并注意它们之间的空间关系以及片段中的时间发展。我们的端到端编码器-解码器视频字幕框架包含两个基于转换器的架构,一个用于单个联合时空视频分析的自适应转换器,以及一个用于高级文本生成的基于自关注的解码器。此外,我们引入了一种自适应帧选择方案,以减少所需的传入帧数,同时在训练两个变压器时保持相关内容。此外,我们通过汇总每个样本的所有ground truth字幕来估计与视频字幕相关的语义概念。我们的方法在MSVD以及考虑多个自然语言生成(NLG)指标的大规模MSR-VTT和VATEX基准数据集上取得了最先进的结果。对多样性分数的额外评估强调了我们生成的标题结构中的表达性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diverse Video Captioning by Adaptive Spatio-temporal Attention
To generate proper captions for videos, the inference needs to identify relevant concepts and pay attention to the spatial relationships between them as well as to the temporal development in the clip. Our end-to-end encoder-decoder video captioning framework incorporates two transformer-based architectures, an adapted transformer for a single joint spatio-temporal video analysis as well as a self-attention-based decoder for advanced text generation. Furthermore, we introduce an adaptive frame selection scheme to reduce the number of required incoming frames while maintaining the relevant content when training both transformers. Additionally, we estimate semantic concepts relevant for video captioning by aggregating all ground truth captions of each sample. Our approach achieves state-of-the-art results on the MSVD, as well as on the large-scale MSR-VTT and the VATEX benchmark datasets considering multiple Natural Language Generation (NLG) metrics. Additional evaluations on diversity scores highlight the expressiveness and diversity in the structure of our generated captions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信