源识别和压缩混合数据从有限的观测

A. Abdi, F. Fekri
{"title":"源识别和压缩混合数据从有限的观测","authors":"A. Abdi, F. Fekri","doi":"10.1109/ITWF.2015.7360728","DOIUrl":null,"url":null,"abstract":"We consider the problem of the identification of a mixture of ergodic stationary sources from a limited number of finite-length observations of a mixture. We propose an algorithm based on Bayesian Information Criterion and Expectation Maximization to identify the sources' models and estimate the mixture parameters. Based on this algorithm, the sources' distributions can be computed and used for nearly optimal memory-assisted coding of the sequences generated by the mixture. Further, we provide upper and lower bounds on the entropy of the mixture source and show that it converges to the upper bound as the length of the sequences increases and derive the convergence rate for the per-symbol entropy of the mixture of finite memory sources.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Source identification and compression of mixture data from finite observations\",\"authors\":\"A. Abdi, F. Fekri\",\"doi\":\"10.1109/ITWF.2015.7360728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of the identification of a mixture of ergodic stationary sources from a limited number of finite-length observations of a mixture. We propose an algorithm based on Bayesian Information Criterion and Expectation Maximization to identify the sources' models and estimate the mixture parameters. Based on this algorithm, the sources' distributions can be computed and used for nearly optimal memory-assisted coding of the sequences generated by the mixture. Further, we provide upper and lower bounds on the entropy of the mixture source and show that it converges to the upper bound as the length of the sequences increases and derive the convergence rate for the per-symbol entropy of the mixture of finite memory sources.\",\"PeriodicalId\":281890,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITWF.2015.7360728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑从有限数量的有限长度的混合物观测中识别遍历固定源混合物的问题。提出了一种基于贝叶斯信息准则和期望最大化的源模型识别和混合参数估计算法。基于该算法,可以计算源的分布,并用于混合产生的序列的近最优记忆辅助编码。进一步,我们给出了混合源熵的上界和下界,并证明了它随着序列长度的增加收敛于上界,并推导了有限记忆源混合的每符号熵的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source identification and compression of mixture data from finite observations
We consider the problem of the identification of a mixture of ergodic stationary sources from a limited number of finite-length observations of a mixture. We propose an algorithm based on Bayesian Information Criterion and Expectation Maximization to identify the sources' models and estimate the mixture parameters. Based on this algorithm, the sources' distributions can be computed and used for nearly optimal memory-assisted coding of the sequences generated by the mixture. Further, we provide upper and lower bounds on the entropy of the mixture source and show that it converges to the upper bound as the length of the sequences increases and derive the convergence rate for the per-symbol entropy of the mixture of finite memory sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信