实时多传感器红外图像增强

B. Stojanovic, Snezana Puzović, Nataša Vlahović, Ranko Petrović, Srđan Stanković
{"title":"实时多传感器红外图像增强","authors":"B. Stojanovic, Snezana Puzović, Nataša Vlahović, Ranko Petrović, Srđan Stanković","doi":"10.1109/NEUREL.2018.8587023","DOIUrl":null,"url":null,"abstract":"Video enhancement algorithms in long-range multi-sensor surveillance systems are of great importance. Infrared sensors typically suffer from blur and noise originating from sensors and their environment. This paper proposes a real-time infrared imaging enhancement algorithm, applicable to multiple sensor types. The research presented in this paper is introductory for developing smart, adaptive, machine learning based enhancement systems.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-Time Multi-Sensor Infrared Imagery Enhancement\",\"authors\":\"B. Stojanovic, Snezana Puzović, Nataša Vlahović, Ranko Petrović, Srđan Stanković\",\"doi\":\"10.1109/NEUREL.2018.8587023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video enhancement algorithms in long-range multi-sensor surveillance systems are of great importance. Infrared sensors typically suffer from blur and noise originating from sensors and their environment. This paper proposes a real-time infrared imaging enhancement algorithm, applicable to multiple sensor types. The research presented in this paper is introductory for developing smart, adaptive, machine learning based enhancement systems.\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8587023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

视频增强算法在远程多传感器监控系统中具有重要意义。红外传感器通常会受到来自传感器及其环境的模糊和噪声的影响。本文提出了一种适用于多种传感器类型的实时红外成像增强算法。本文提出的研究是开发智能的、自适应的、基于机器学习的增强系统的入门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Multi-Sensor Infrared Imagery Enhancement
Video enhancement algorithms in long-range multi-sensor surveillance systems are of great importance. Infrared sensors typically suffer from blur and noise originating from sensors and their environment. This paper proposes a real-time infrared imaging enhancement algorithm, applicable to multiple sensor types. The research presented in this paper is introductory for developing smart, adaptive, machine learning based enhancement systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信