经济衰退分类的机器学习

Bruce Jackson, M. Rege
{"title":"经济衰退分类的机器学习","authors":"Bruce Jackson, M. Rege","doi":"10.1109/IRI.2019.00019","DOIUrl":null,"url":null,"abstract":"The ability to quickly and accurately classify economic activity into periods of recession and expansion is of great interest to economists and policy makers. Machine Learning methods can potentially be applied to the classification of business cycles. This paper describes two machine learning methods, K-Nearest Neighbor and Neural Networks, and compares them to a Dynamic Factor Markov Switching model for determining business cycle turning points. We conclude that machine learning techniques can offer more accurate classifiers that are worthy of additional study.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning for Classification of Economic Recessions\",\"authors\":\"Bruce Jackson, M. Rege\",\"doi\":\"10.1109/IRI.2019.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to quickly and accurately classify economic activity into periods of recession and expansion is of great interest to economists and policy makers. Machine Learning methods can potentially be applied to the classification of business cycles. This paper describes two machine learning methods, K-Nearest Neighbor and Neural Networks, and compares them to a Dynamic Factor Markov Switching model for determining business cycle turning points. We conclude that machine learning techniques can offer more accurate classifiers that are worthy of additional study.\",\"PeriodicalId\":295028,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2019.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

经济学家和政策制定者对快速准确地将经济活动划分为衰退期和扩张期的能力非常感兴趣。机器学习方法可以潜在地应用于商业周期的分类。本文描述了两种机器学习方法,k近邻和神经网络,并将它们与确定商业周期转折点的动态因子马尔可夫切换模型进行了比较。我们的结论是,机器学习技术可以提供更准确的分类器,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for Classification of Economic Recessions
The ability to quickly and accurately classify economic activity into periods of recession and expansion is of great interest to economists and policy makers. Machine Learning methods can potentially be applied to the classification of business cycles. This paper describes two machine learning methods, K-Nearest Neighbor and Neural Networks, and compares them to a Dynamic Factor Markov Switching model for determining business cycle turning points. We conclude that machine learning techniques can offer more accurate classifiers that are worthy of additional study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信