热储水箱瞬态模态的火用分析

V. Voloshchuk, O. Nekrashevych, S. Liubytskyi
{"title":"热储水箱瞬态模态的火用分析","authors":"V. Voloshchuk, O. Nekrashevych, S. Liubytskyi","doi":"10.20998/2078-774x.2020.01.07","DOIUrl":null,"url":null,"abstract":"The paper demonstrates the importance of taking into account the accumulation of exergy in a control volume of a thermal storage during transient modes for evaluation of exergy-based parameters. The investigations are based on the exergy balance equation and mathematical model of the mode of simultaneous thermal energy addition and removal. It is found that for the specified parameters of the unit, when the exergy accumulation is not included, the error of estimation of exergy-base parameters can be large: in case of calculation of fuel of exergy and exergy efficiency this error can reach 80 %, the exergy destruction values are received with 130 % error. It is shown that these errors depend on the ratio of rates of cold and hot working fluids and decrease with increasing this ratio, but almost do not depend on the storage volumes and the initial temperatures of working fluids. Including accumulation of exergy within the control volumes during dynamic modes of thermal systems is necessary for implementation of exergy-based control strategies.","PeriodicalId":416126,"journal":{"name":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergy Analysis of Transiant Modes in Hot Water Storage Tanks\",\"authors\":\"V. Voloshchuk, O. Nekrashevych, S. Liubytskyi\",\"doi\":\"10.20998/2078-774x.2020.01.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper demonstrates the importance of taking into account the accumulation of exergy in a control volume of a thermal storage during transient modes for evaluation of exergy-based parameters. The investigations are based on the exergy balance equation and mathematical model of the mode of simultaneous thermal energy addition and removal. It is found that for the specified parameters of the unit, when the exergy accumulation is not included, the error of estimation of exergy-base parameters can be large: in case of calculation of fuel of exergy and exergy efficiency this error can reach 80 %, the exergy destruction values are received with 130 % error. It is shown that these errors depend on the ratio of rates of cold and hot working fluids and decrease with increasing this ratio, but almost do not depend on the storage volumes and the initial temperatures of working fluids. Including accumulation of exergy within the control volumes during dynamic modes of thermal systems is necessary for implementation of exergy-based control strategies.\",\"PeriodicalId\":416126,\"journal\":{\"name\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2078-774x.2020.01.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-774x.2020.01.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文论证了在瞬态模式下,考虑蓄热器控制体积内的火用积累对于评估基于火用的参数的重要性。研究的基础是火用平衡方程和热同时加减模式的数学模型。研究发现,对于机组指定参数,在不考虑火用积累时,对火用基础参数的估计误差较大,在计算火用燃料和火用效率时,该误差可达80%,得到的火用破坏值误差为130%。结果表明,这些误差与工质冷热比有关,且随工质冷热比的增大而减小,而与储存量和工质初始温度基本无关。在热系统的动态模式中,包括控制体积内的火用积累对于实现基于火用的控制策略是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exergy Analysis of Transiant Modes in Hot Water Storage Tanks
The paper demonstrates the importance of taking into account the accumulation of exergy in a control volume of a thermal storage during transient modes for evaluation of exergy-based parameters. The investigations are based on the exergy balance equation and mathematical model of the mode of simultaneous thermal energy addition and removal. It is found that for the specified parameters of the unit, when the exergy accumulation is not included, the error of estimation of exergy-base parameters can be large: in case of calculation of fuel of exergy and exergy efficiency this error can reach 80 %, the exergy destruction values are received with 130 % error. It is shown that these errors depend on the ratio of rates of cold and hot working fluids and decrease with increasing this ratio, but almost do not depend on the storage volumes and the initial temperatures of working fluids. Including accumulation of exergy within the control volumes during dynamic modes of thermal systems is necessary for implementation of exergy-based control strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信