基于语义分歧的Web服务社区评价

Hafida Naim, Mustapha Aznag, M. Quafafou, Nicolas Durand
{"title":"基于语义分歧的Web服务社区评价","authors":"Hafida Naim, Mustapha Aznag, M. Quafafou, Nicolas Durand","doi":"10.1109/SCC.2016.101","DOIUrl":null,"url":null,"abstract":"The number of community detection algorithms is growing continuously adopting a topological based approach to discover optimal subgraphs or communities. In this paper, we propose a new method combining both topology and semantic to evaluate and rank community detection algorithms. To achieve this goal we consider a probabilistic topic based approach to define a new measure called semantic divergence of communities. Combining this measure with others related to prior knowledge, we compute a score for each algorithm to evaluate the effectiveness of its communities and propose a ranking method. We have evaluated our approach considering communities of real web services.","PeriodicalId":115693,"journal":{"name":"2016 IEEE International Conference on Services Computing (SCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semantic Divergence Based Evaluation of Web Service Communities\",\"authors\":\"Hafida Naim, Mustapha Aznag, M. Quafafou, Nicolas Durand\",\"doi\":\"10.1109/SCC.2016.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of community detection algorithms is growing continuously adopting a topological based approach to discover optimal subgraphs or communities. In this paper, we propose a new method combining both topology and semantic to evaluate and rank community detection algorithms. To achieve this goal we consider a probabilistic topic based approach to define a new measure called semantic divergence of communities. Combining this measure with others related to prior knowledge, we compute a score for each algorithm to evaluate the effectiveness of its communities and propose a ranking method. We have evaluated our approach considering communities of real web services.\",\"PeriodicalId\":115693,\"journal\":{\"name\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC.2016.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2016.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社团检测算法的数量在不断增长,它们采用基于拓扑的方法来发现最优子图或社团。本文提出了一种结合拓扑和语义对社区检测算法进行评价和排序的新方法。为了实现这一目标,我们考虑了一种基于概率主题的方法来定义一个新的度量,称为社区的语义分歧。将此度量与其他与先验知识相关的度量相结合,我们为每个算法计算一个分数来评估其社区的有效性,并提出一种排名方法。考虑到真实的web服务社区,我们已经评估了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Divergence Based Evaluation of Web Service Communities
The number of community detection algorithms is growing continuously adopting a topological based approach to discover optimal subgraphs or communities. In this paper, we propose a new method combining both topology and semantic to evaluate and rank community detection algorithms. To achieve this goal we consider a probabilistic topic based approach to define a new measure called semantic divergence of communities. Combining this measure with others related to prior knowledge, we compute a score for each algorithm to evaluate the effectiveness of its communities and propose a ranking method. We have evaluated our approach considering communities of real web services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信