基于新损失函数的扩展门控卷积神经网络在声音事件检测中的应用

Ke-Xin He, Weiqiang Zhang, Jia Liu, Yao Liu
{"title":"基于新损失函数的扩展门控卷积神经网络在声音事件检测中的应用","authors":"Ke-Xin He, Weiqiang Zhang, Jia Liu, Yao Liu","doi":"10.1109/APSIPAASC47483.2019.9023308","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for rare sound event detection. Compared with conventional Convolutional Recurrent Neural Network (CRNN), we devise a Dilated-Gated Convolutional Neural Network (DGCNN) to improve the detection accuracy as well as computational efficiency. Furthermore, we propose a new loss function. Since frame-level predictions will be post processed to get final prediction, continuous false alarm frames will lead to more insertion errors than single false alarm frame. So we adopt a discriminative penalty term to the loss function to reduce insertion errors. Our method is tested on the dataset of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 Challenge task 2. Our model can achieve an F-score of 91.3% and error rate of 0.16 on the evaluation dataset while baseline achieves an F-score of 87.5% and error rate of 0.23.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dilated-Gated Convolutional Neural Network with A New Loss Function on Sound Event Detection\",\"authors\":\"Ke-Xin He, Weiqiang Zhang, Jia Liu, Yao Liu\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method for rare sound event detection. Compared with conventional Convolutional Recurrent Neural Network (CRNN), we devise a Dilated-Gated Convolutional Neural Network (DGCNN) to improve the detection accuracy as well as computational efficiency. Furthermore, we propose a new loss function. Since frame-level predictions will be post processed to get final prediction, continuous false alarm frames will lead to more insertion errors than single false alarm frame. So we adopt a discriminative penalty term to the loss function to reduce insertion errors. Our method is tested on the dataset of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 Challenge task 2. Our model can achieve an F-score of 91.3% and error rate of 0.16 on the evaluation dataset while baseline achieves an F-score of 87.5% and error rate of 0.23.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种罕见声事件检测的新方法。与传统的卷积递归神经网络(CRNN)相比,我们设计了一种扩展门控卷积神经网络(DGCNN),以提高检测精度和计算效率。此外,我们提出了一个新的损失函数。由于帧级预测需要后处理才能得到最终的预测,因此连续的虚警帧会比单个虚警帧导致更多的插入错误。因此,我们对损失函数采用判别惩罚项来减少插入误差。我们的方法在声学场景和事件检测与分类(DCASE) 2017挑战任务2的数据集上进行了测试。我们的模型在评估数据集上的f值为91.3%,错误率为0.16,而基线的f值为87.5%,错误率为0.23。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dilated-Gated Convolutional Neural Network with A New Loss Function on Sound Event Detection
In this paper, we propose a new method for rare sound event detection. Compared with conventional Convolutional Recurrent Neural Network (CRNN), we devise a Dilated-Gated Convolutional Neural Network (DGCNN) to improve the detection accuracy as well as computational efficiency. Furthermore, we propose a new loss function. Since frame-level predictions will be post processed to get final prediction, continuous false alarm frames will lead to more insertion errors than single false alarm frame. So we adopt a discriminative penalty term to the loss function to reduce insertion errors. Our method is tested on the dataset of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 Challenge task 2. Our model can achieve an F-score of 91.3% and error rate of 0.16 on the evaluation dataset while baseline achieves an F-score of 87.5% and error rate of 0.23.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信