稀疏采样二维皮质数据的三维特征函数展开

M. Chung, Yu-Chien Wu, A. Alexander
{"title":"稀疏采样二维皮质数据的三维特征函数展开","authors":"M. Chung, Yu-Chien Wu, A. Alexander","doi":"10.1109/ISBI.2009.5192996","DOIUrl":null,"url":null,"abstract":"Various cortical measures such as cortical thickness are routinely computed along the vertices of cortical surface meshes. These metrics are used in surface-based morphometric studies. If one wishes to compare the surface-based morphometric studies to 3D volume-based studies at a voxel level, 3D interpolation of the sparsely sampled 2D cortical data is needed. In this paper, we have developed a new computational framework for explicitly representing sparsely sampled cortical data as a linear combination of eigenfunctions of the 3D Laplacian. The eigenfunctions are expressed as the product of spherical Bessel functions and spherical harmonics. The coefficients of the expansion are estimated in the least squares fashion iteratively by breaking the problem into smaller subproblems to reduce a computational bottleneck.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D eigenfunction expansion of sparsely sampled 2D cortical data\",\"authors\":\"M. Chung, Yu-Chien Wu, A. Alexander\",\"doi\":\"10.1109/ISBI.2009.5192996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various cortical measures such as cortical thickness are routinely computed along the vertices of cortical surface meshes. These metrics are used in surface-based morphometric studies. If one wishes to compare the surface-based morphometric studies to 3D volume-based studies at a voxel level, 3D interpolation of the sparsely sampled 2D cortical data is needed. In this paper, we have developed a new computational framework for explicitly representing sparsely sampled cortical data as a linear combination of eigenfunctions of the 3D Laplacian. The eigenfunctions are expressed as the product of spherical Bessel functions and spherical harmonics. The coefficients of the expansion are estimated in the least squares fashion iteratively by breaking the problem into smaller subproblems to reduce a computational bottleneck.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5192996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5192996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

各种皮质测量,如皮质厚度,通常沿着皮质表面网格的顶点计算。这些指标用于基于表面的形态测量学研究。如果希望在体素水平上将基于表面的形态测量学研究与基于3D体积的研究进行比较,则需要对稀疏采样的2D皮质数据进行3D插值。在本文中,我们开发了一种新的计算框架,用于将稀疏采样的皮质数据显式表示为三维拉普拉斯特征函数的线性组合。特征函数表示为球面贝塞尔函数与球面谐波的乘积。通过将问题分解为更小的子问题,以最小二乘的方式迭代估计展开系数,以减少计算瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D eigenfunction expansion of sparsely sampled 2D cortical data
Various cortical measures such as cortical thickness are routinely computed along the vertices of cortical surface meshes. These metrics are used in surface-based morphometric studies. If one wishes to compare the surface-based morphometric studies to 3D volume-based studies at a voxel level, 3D interpolation of the sparsely sampled 2D cortical data is needed. In this paper, we have developed a new computational framework for explicitly representing sparsely sampled cortical data as a linear combination of eigenfunctions of the 3D Laplacian. The eigenfunctions are expressed as the product of spherical Bessel functions and spherical harmonics. The coefficients of the expansion are estimated in the least squares fashion iteratively by breaking the problem into smaller subproblems to reduce a computational bottleneck.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信