CytoEMD

Haidong Yi, Natalie Stanley
{"title":"CytoEMD","authors":"Haidong Yi, Natalie Stanley","doi":"10.1145/3535508.3545525","DOIUrl":null,"url":null,"abstract":"Modern single-cell technologies, such as Cytometry by Time of Flight (CyTOF), measure the simultaneous expression of multiple protein markers per cell and have enabled the characterization of the immune system at unparalleled depths across numerous clinical applications. Despite the success of a variety of developed bioinformatics techniques for automatically characterizing cells into particular immune cell-types, methods to encode variation across heterogeneous cellular landscapes and with respect to a clinical outcome of interest are still lacking. To summarize and unravel the immunological variation across multiple samples profiled with CyTOF, we developed CytoEMD, a fast and scalable metric-based method to encode a compact vector representation for each profiled sample. CytoEMD uses earth mover's distance (EMD) to quantify the differences between pairs of profiled samples, which can be further projected into a latent space for visualization and interpretation. We compared CytoEMD to gating-based and deep-learning based set autoencoder methods and found that the CytoEMD approach 1) correctly captures between-patient variation, and 2) is more efficient and requires significantly fewer parameters. CytoEMD further promotes interpretability by providing insight into the cell-types driving variation between samples. CytoEMD is available as an open-sourced python package at https://github.com/CompCy-lab/CytoEMD.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CytoEMD\",\"authors\":\"Haidong Yi, Natalie Stanley\",\"doi\":\"10.1145/3535508.3545525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern single-cell technologies, such as Cytometry by Time of Flight (CyTOF), measure the simultaneous expression of multiple protein markers per cell and have enabled the characterization of the immune system at unparalleled depths across numerous clinical applications. Despite the success of a variety of developed bioinformatics techniques for automatically characterizing cells into particular immune cell-types, methods to encode variation across heterogeneous cellular landscapes and with respect to a clinical outcome of interest are still lacking. To summarize and unravel the immunological variation across multiple samples profiled with CyTOF, we developed CytoEMD, a fast and scalable metric-based method to encode a compact vector representation for each profiled sample. CytoEMD uses earth mover's distance (EMD) to quantify the differences between pairs of profiled samples, which can be further projected into a latent space for visualization and interpretation. We compared CytoEMD to gating-based and deep-learning based set autoencoder methods and found that the CytoEMD approach 1) correctly captures between-patient variation, and 2) is more efficient and requires significantly fewer parameters. CytoEMD further promotes interpretability by providing insight into the cell-types driving variation between samples. CytoEMD is available as an open-sourced python package at https://github.com/CompCy-lab/CytoEMD.\",\"PeriodicalId\":354504,\"journal\":{\"name\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3535508.3545525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
CytoEMD
Modern single-cell technologies, such as Cytometry by Time of Flight (CyTOF), measure the simultaneous expression of multiple protein markers per cell and have enabled the characterization of the immune system at unparalleled depths across numerous clinical applications. Despite the success of a variety of developed bioinformatics techniques for automatically characterizing cells into particular immune cell-types, methods to encode variation across heterogeneous cellular landscapes and with respect to a clinical outcome of interest are still lacking. To summarize and unravel the immunological variation across multiple samples profiled with CyTOF, we developed CytoEMD, a fast and scalable metric-based method to encode a compact vector representation for each profiled sample. CytoEMD uses earth mover's distance (EMD) to quantify the differences between pairs of profiled samples, which can be further projected into a latent space for visualization and interpretation. We compared CytoEMD to gating-based and deep-learning based set autoencoder methods and found that the CytoEMD approach 1) correctly captures between-patient variation, and 2) is more efficient and requires significantly fewer parameters. CytoEMD further promotes interpretability by providing insight into the cell-types driving variation between samples. CytoEMD is available as an open-sourced python package at https://github.com/CompCy-lab/CytoEMD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信