哥伦布:云的配置发现

R. Balani, Deepak Jeswani, Dipyaman Banerjee, Akshat Verma
{"title":"哥伦布:云的配置发现","authors":"R. Balani, Deepak Jeswani, Dipyaman Banerjee, Akshat Verma","doi":"10.1109/ICDCS.2014.41","DOIUrl":null,"url":null,"abstract":"Low-cost, accurate and scalable software configuration discovery is the key to simplifying many cloud management tasks. However, the lack of standardization across software configuration techniques has prevented the development of a fully automated and application independent configuration discovery solution. In this work, we present Columbus, an application-agnostic system to automatically discover environmental configuration parameters or Points of Variability (PoV) in clustered applications with high accuracy. Columbus uses the insight that even though configuration mechanisms and files vary across different software, the PoVs are encoded using a few common patterns. It uses a novel rule framework to annotate file content with PoVs and a Bayesian network to estimate confidence for annotated PoVs. Our experiments confirm that Columbus can accurately discover configuration for a diverse set of enterprise and cloud applications. It has subsequently been integrated in three real-world systems that analyze this information for discovery of distributed application dependencies, enterprise IT migration and virtual application configuration.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Columbus: Configuration Discovery for Clouds\",\"authors\":\"R. Balani, Deepak Jeswani, Dipyaman Banerjee, Akshat Verma\",\"doi\":\"10.1109/ICDCS.2014.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-cost, accurate and scalable software configuration discovery is the key to simplifying many cloud management tasks. However, the lack of standardization across software configuration techniques has prevented the development of a fully automated and application independent configuration discovery solution. In this work, we present Columbus, an application-agnostic system to automatically discover environmental configuration parameters or Points of Variability (PoV) in clustered applications with high accuracy. Columbus uses the insight that even though configuration mechanisms and files vary across different software, the PoVs are encoded using a few common patterns. It uses a novel rule framework to annotate file content with PoVs and a Bayesian network to estimate confidence for annotated PoVs. Our experiments confirm that Columbus can accurately discover configuration for a diverse set of enterprise and cloud applications. It has subsequently been integrated in three real-world systems that analyze this information for discovery of distributed application dependencies, enterprise IT migration and virtual application configuration.\",\"PeriodicalId\":170186,\"journal\":{\"name\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2014.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

低成本、准确和可扩展的软件配置发现是简化许多云管理任务的关键。然而,缺乏跨软件配置技术的标准化阻碍了完全自动化和独立于应用程序的配置发现解决方案的开发。在这项工作中,我们提出了Columbus,一个与应用无关的系统,用于高精度地自动发现集群应用中的环境配置参数或可变性点(PoV)。Columbus认为,尽管配置机制和文件在不同的软件中是不同的,但是pov是使用一些通用模式进行编码的。它使用一种新的规则框架来用pov注释文件内容,并使用贝叶斯网络来估计注释pov的置信度。我们的实验证实,Columbus可以准确地发现各种企业和云应用程序的配置。它随后被集成到三个现实世界的系统中,这些系统分析这些信息,以发现分布式应用程序依赖关系、企业It迁移和虚拟应用程序配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Columbus: Configuration Discovery for Clouds
Low-cost, accurate and scalable software configuration discovery is the key to simplifying many cloud management tasks. However, the lack of standardization across software configuration techniques has prevented the development of a fully automated and application independent configuration discovery solution. In this work, we present Columbus, an application-agnostic system to automatically discover environmental configuration parameters or Points of Variability (PoV) in clustered applications with high accuracy. Columbus uses the insight that even though configuration mechanisms and files vary across different software, the PoVs are encoded using a few common patterns. It uses a novel rule framework to annotate file content with PoVs and a Bayesian network to estimate confidence for annotated PoVs. Our experiments confirm that Columbus can accurately discover configuration for a diverse set of enterprise and cloud applications. It has subsequently been integrated in three real-world systems that analyze this information for discovery of distributed application dependencies, enterprise IT migration and virtual application configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信